Python Basics - NumPy and Pandas

At the end of this week, you will be able to:

References

Introduction to Python

Python has emerged over the last recent years as one of the most used tools for data science projects. It is known for code readability and interactive features. Similar to R, Python is supported by a large number of packages that extend its features and functions. Common packages are, to name few:

  • NumPy: provides functions for manipulating arrays
  • Pandas: provides functions for manipulating data frames
  • Matplotlib: provides functions for visualizations and plotting
  • Statsmodels: provides functions for statistical models
  • Scikit-learn: provides functions for machine learning algorithms

IDE for Python

We will use RStudio IDE to run Python but, there are other IDEs that you may want to check for your information such as Pycharm, Jupyter, and others. We will be using Python 3. We will see that there are multiple similarities between R and Python.

Please be advised that if you experience any problems with Python while using the RStudio Server UWF, we suggest installing R/RStudio on your device and then installing the R package reticulate.

Install Python Libraries

As we have seen with R, Python also is organized with libraries/packages/modules. These libraries need to *be installed as needed and loaded. To install a library in Python on RStudio Server. Go to Terminal (not Console) and run the following:

python3 -m pip install –user “package name”

example to install numpy, run:

python3 -m pip install –user numpy

You need to do this for each library you would need to use such numpy, pandas, matplotlib, statsmodels, seaborn, and sklearn.

Python Basics

Indentation refers to the spaces at the beginning of a code line. The indentation in Python is very important.

Recordings of this week provide lessons about the following concepts:

  • Python Variables:
# This is Python Code
print("Hello World!")
Hello World!

You can name a variable following these rules:

  • One word
  • Use only letters, numbers, and the underscore (_) character
  • Can’t begin with a number
  • Python is case-sensitive
x = "HeyHey"
y = 40
x
y
x, y = "Hey", 45 # Assign values to multiple variables
print(x)
print(y)
ranks = ["first","second","third"] # list
x, y, z = ranks
print(ranks)
x
y
z
# define a function
def myf():
  x="Hello"
  print(x)
# use the function   
myf()

# define another function
def myf():
  global x # x to be global - outside the function
  x="Hello"
  print(x)
  
myf()
Hey
45
['first', 'second', 'third']
Hello
Hello

Data Types:

x = str(3)    # x will be '3'
x = int(3)    # x will be 3
x = float(3)  # x is a float - 3.0
x = 1j       # x is complex
x = range(5,45)    # x is a range type
x = [1,2,1,24,54,45,2,1]  # x is a list
x = (1,2,1,24,54,45,2,1)  # x is a tuple
x = {"name" : "Ach", "age" : 85}  # x is a dict (mapping)

Math operations:

5+4   # Addition
5*4   # Multiplication
5**4  # power / exponent
print("Hey"*3) # String operations
import math as mt # More more math functions using package *math*
mt.cos(556) # cosine function
import random # generate random numbers
print(random.randrange(1, 10))
import numpy as np # generate random numbers
print(np.random.normal(loc=0,scale=1,size=2))
HeyHeyHey
7
[-0.23600152  0.31460777]

Strings operations:

word = "Hello There!"
word[1] # accessing characters in a String
for z in word:
  print(z)

len(word) # strings length

"or" in word # check if "or" is in word
word1 = "Do you use Python or R or both!"
"or" in word1 # check if "or" is in word1
H
e
l
l
o
 
T
h
e
r
e
!
True

Python assignment operators:

Operator Example Results
= x = 10 x = 10
+= x += 10 x = x+10
-= x -= 10 x = x-10
*= x *= 10 x = x*10
/= x /= 10 x = x/10
%= x %= 10 x = x%10
**= x **= 10 x = x**10

If-Else Statements:

h = 2
if h > 2:
 print("Yes!") # indentation very important other ERROR
elif h > 50:
 print("Yes Yes!")
else:
  print("No")
No

For Loop Statements:

for k in range(1,10): 
  print(str(k)) # does not show up 10; goes up to 9
1
2
3
4
5
6
7
8
9

Python Numpy

NumPy is a Python library. It stands for Numerical Python and very useful for manipulating arrays. It is faster than using Lists and quite useful for machine learning applications.

import numpy # this code import NumPy library
arr1 =  numpy.array([1,2,45,564,98]) # create array using NumPy
print(arr1)
[  1   2  45 564  98]

Usually, we give a Library an alias such as np for the NumPy library. Array objects in NumPy are called ndarray. We can pass any array (list, tuple, etc.) to the function array():

import numpy as np
arr1 = np.array([1,2,45,564,98])
print(arr1)

# Multidimensional arrays!
d0 = np.array(56)
d1 = np.array([15, 52, 83, 84, 55])
d2 = np.array([[1, 2, 3], [4, 5, 6]])
d3 = np.array([[[1, 2, 3], [4, 5, 6]], [[11, 21, 31], [41, 51, 61]]])

print(d0.ndim) # print dimension
print(d1.ndim)
print(d2.ndim)
print(d3.ndim)
[  1   2  45 564  98]
0
1
2
3

Array Indexing:

import numpy as np

D2 = np.array([[1,2,3,4,5], [6,7,8,9,10]], dtype=float)

print('4th element on 1st dim: ', D2[0, 3])
print('4th element on 2nd dim: ', D2[1, 3])
print('1st dim: ', D2[0, :])

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print("From the start to index 2 (not included): ", arr[:2])
print("From the index 2 (included) to the end: ", arr[2:])
4th element on 1st dim:  4.0
4th element on 2nd dim:  9.0
1st dim:  [1. 2. 3. 4. 5.]
From the start to index 2 (not included):  [1 2]
From the index 2 (included) to the end:  [3 4 5 6 7]

Arithmetic operations and Math/Stat functions:

import numpy as np

a = np.array([[1,2,3,4,5], [6,7,8,9,10]], dtype="f")
b = np.array([[10,20,30,40,50], [60,70,80,90,100]], dtype="i")

np.subtract(b,a) # b-a
np.add(b,a) # b+a
np.divide(b,a) # b/a
np.multiply(b,a) # b*a
np.exp(a) # exponential function
np.log(a) # natural logarithm function
np.sqrt(a) # square root function
np.full((3,3),5) # 3x3 constant array
a.mean() # mean 
a.std() # standard deviation
a.var() # variance
a.mean(axis=0) # mean across axis 0 (rows)
np.median(a) # median 
np.median(a,axis=0) # median 
array([3.5, 4.5, 5.5, 6.5, 7.5], dtype=float32)

Random numbers generation:

Random is a module in NumPy to offer functions to work with random numbers.

from numpy import random

x = random.randint(100) # a random integer from 0 to 100
print(x)

x = random.rand(10) # 10 random numbers float from 0 to 1
print(x)

x = random.randint(100,size=(10)) # 10 random integers from 0 to 100
print(x)

x = random.randint(100,size=(10,10)) # 10x10 random integers from 0 to 100
print(x)

x = random.choice([100,12,0,45]) # sample one value from an array
print(x)

x = random.choice([100,12,0,45],size=(10)) # sample one value from an array
print(x)

x = random.choice([100, 12, 0, 45], p=[0.1, 0.3, 0.6, 0.0], size=(10)) # Probability sampling
print(x)

x = random.normal(loc=1, scale=0.5, size=(10)) # Normal distribution
print(x)

x = random.normal(loc=1, scale=0.5, size=(10)) # Normal distribution
print(x)
13
[0.81040855 0.97471457 0.95913855 0.61207417 0.87371005 0.13088357
 0.78756168 0.52396309 0.48394988 0.2610489 ]
[43 10 86 55 16 23 89 40 33 31]
[[84 20  5 97 50 34 12 46 40 89]
 [21 26 67 85 86 90  0  0 39 87]
 [40 89 71 28  5 97 94 98 97  2]
 [92 38 71 53 67 91  6  5  4 35]
 [43 42 87 45 11 58 34  1 51 30]
 [31 74 83 63 38 90 23 77 29 90]
 [48 91 31  9 99 98 51 92 80 21]
 [ 4 35 76 65 28 88 94 10 22 75]
 [13 43 32 25  9 47 81 76 98 10]
 [11 51 42 36 55 25 84 30 84 12]]
45
[  0   0  12  45   0 100 100  45  12 100]
[12  0  0  0  0  0  0  0  0  0]
[1.04037504 0.72046807 1.38105608 0.42761585 0.69574904 1.28736621
 1.9797221  1.11598722 1.8180968  1.4188014 ]
[1.00355013 0.02429212 0.95880871 0.05053701 1.5125858  0.92567197
 0.82939892 0.45977718 1.42182413 0.8339264 ]

📚 For more reading visit Introduction to NumPy.

Python Pandas

Pandas is a Python library. It is useful for data wrangling and working with data sets. Pandas refers to both Panel Data and Python Data Analysis. This is a handy Cheat Sheet for Pandas for data wrangling.

import pandas as pd

a = [1,6,8]
series = pd.Series(a) # this is a panda series
print(series)

mydata = {
  "calories": [1000, 690, 190],
  "duration": [50, 40, 20]
}
mydataframe = pd.DataFrame(mydata) # data frame
mydataframe
0    1
1    6
2    8
dtype: int64
calories duration
0 1000 50
1 690 40
2 190 20

Read CSV Files

CSV files are a simple way to store large data sets. Data Frame Pandas can read CSV files easily:

import pandas as pd
import numpy as np

df = pd.read_csv("../datasets/mycars.csv")
print(df.info()) # Info about Data

df.head()

df.loc[3,"speed"] = np.NaN # insert NaN in the row 10 in speed column
df.head()

newdf = df.dropna() # drop NA cells
newdf.head()

df.dropna(inplace = True) # drop NA cells and replace "df" with the new data
df.head()

df = pd.read_csv("../datasets/mycars.csv")
df.fillna(100, inplace = True) # replace NA values with 100.

df["speed"].fillna(10, inplace = True) # replace NA values with 10 only in column "speed"

x = df["speed"].mean() # find mean of speed
df["speed"].fillna(x, inplace = True) # replace NA values with mean only in column "speed"


print(df.duplicated().head()) # show duplicates
df.drop_duplicates().head() # drop duplicates
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 3 columns):
 #   Column      Non-Null Count  Dtype
---  ------      --------------  -----
 0   Unnamed: 0  50 non-null     int64
 1   speed       50 non-null     int64
 2   dist        50 non-null     int64
dtypes: int64(3)
memory usage: 1.3 KB
None
0    False
1    False
2    False
3    False
4    False
dtype: bool
Unnamed: 0 speed dist
0 1 4 2
1 2 4 10
2 3 7 4
3 4 7 22
4 5 8 16

🛎 🎙️ Recordings on Canvas will cover more details and examples! Have fun learning and coding 😃! Let me know how I can help!

📚 👈 Assignments - Python Basics

Instructions are posted on Canvas.