Analysis of the Dynamical Cluster Approximation for the Triangular Lattice Hubbard Model

Christopher Varney[†] Alexandru Macridin^{††} Richard Scalettar[†] Mark Jarrell^{††} Brian Moritz^{*}

† University of California, Davis * University of Waterloo

Overview

- Hubbard Model
- Dynamical Cluster Approximation
- Results
 - ◆ Energy
 - Specific Heat
 - ◆ Local Moment
- Future Work

Triangular Lattice Hubbard Model

Introduction Results Summary

$$H = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \sum_{\sigma} \left[c^{\dagger}_{\mathbf{i}, \sigma} c_{\mathbf{j}, \sigma} + \text{H.c.} \right] + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} - \mu \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} \right]$$

Geometrically frustrated Na_xCoO₂ \cdot yH₂O κ -(ET)₂X

K. Takada *et al.* Nature **422**, 53 (2003).

DCA

Introduction Results Summary

- Translationally invariant
- Exact for weak/strong-coupling, $N_c \to \infty, d = \infty$
- Observables are measured experimentally

Th. Maier *et al.* Rev. Mod. Phys. **77**, 1027 (2005).

Clusters

Introduction Results Summary

Clusters

Introduction Results Summary

Clusters

Introduction Results Summary

U = 4t

 \bullet c_n, Δ are fitting parameters

Introduction Results Summary

 $N_c = 9$ U = 4t

Introduction Results Summary

 $N_c = 9$ U = 6t

Introduction Results Summary

 $N_{c} = 9$ U = 8t

Introduction Results Summary

 $N_{c} = 9$ U = 10t

Introduction Results Summary

 $N_{c} = 9$ U = 12t

Local Moment $\langle m_z^2 \rangle = \langle (n_{\uparrow} - n_{\downarrow})^2 \rangle$

Introduction Results Summary

U = 12t

Local Moment $\langle m_z^2 \rangle = \langle (n_{\uparrow} - n_{\downarrow})^2 \rangle$

Summary

Introduction Results Summary

- DCA to study half-filled Hubbard model on a triangular lattice
- $\blacksquare \quad \text{Large } U \text{ specific heat: two peaks}$
- Local moment grows with cluster size.

Future Work:

Analytic continuation

$$G(\mathbf{K}, \tau) = \int \mathrm{d}\omega \frac{\mathrm{e}^{-\omega\tau}}{1 + \mathrm{e}^{-\beta\omega}} A(\mathbf{K}, \omega)$$

 $N_c = 12, 16$ $\rho = 1/3, 2/3$