Quantum Monte Carlo S Triangular Hubl

Christopher Varney[†] Brian Moritz^{†† *} Karan Aryanpour[†] R Alexandru Macridin^{††}

		† University of California, Davis					++	Unive
							* Un	iversit
•	•	•	•	•	•	•		

Iı

■ Future Work

Hub

$$\hat{H} = -t \sum_{\langle \mathbf{ij} \rangle \sigma} \left(c^{\dagger}_{\mathbf{i}\sigma} c_{\mathbf{j}\sigma} + \text{h.c.} \right) - \mu \sum_{\mathbf{i}\sigma} n_{\mathbf{i}\sigma} + U \sum_{\mathbf{i$$

• $c_{\mathbf{i}\sigma}^{\dagger}(c_{\mathbf{i}\sigma})$: Fermion creation(destruction) c

- \blacksquare t: Inter-site hopping parameter
- \blacksquare U: On-site Coulomb repulsion
- \blacksquare μ : Chemical potential

Triang

Triang

Determinant Quantum Monte Carlo (DQMC)

Partition Function

$$Z = \operatorname{Tr} e^{-\beta \hat{H}}$$
$$\to \det \left[1 + e^{-\beta h} \right]$$

Self-energy

$$\Sigma(r,\tau) = \Sigma(r_{\rm max},\tau)$$

Sign problem

Dynamical I (DMFT)

Self-en

 \sum

■ Ignores fluctua

■ No sig

Energ

Local Momer

Specific Heat Comparison: \Box vs \triangle la

Loc

Vanishing moment peak in DMFT result

 Mott transition

■ Low-T specific heat behavior is less pron lattice

 \square No low-T peak for small U

