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Abstract

Strongly correlated materials exhibit some of the most complex and technologically

useful phenomena in condensed matter. We use the world line and determinant quan-

tum Monte Carlo techniques to explore the phases of the Hubbard Hamiltonian, a

model describing strong interactions, in a number of different contexts. We first con-

sider the spin, charge, and bond order correlations of the one-dimensional extended

fermion Hubbard model in the presence of a coupling to the lattice. A static al-

ternating lattice distortion leads to enhanced charge density wave correlations at the

expense of antiferromagnetic order. When the lattice degrees of freedom are dynamic,

we show that a similar effect occurs even though the charge asymmetry must arise

spontaneously. Although the evolution of the total energy with lattice coupling is

smooth, the individual components exhibit sharp crossovers at the phase boundaries.

Finally, we observe a tendency for bond order in the region between the charge and

spin density wave phases.

Second, we examine mixtures of bosons and fermions in one-dimensional optical

lattices. We evaluate the density profiles and bosonic visibility Vb, resolving the

discrepancy between theory and experiment by identifying parameter regimes where

Vb is reduced and increased. We present a simple qualitative picture of the different

response to the fermion admixture in terms of the superfluid and Mott-insulating

domains before and after the fermions are included. Finally, we show that Vb exhibits

kinks which are tied to the domain evolution present in the pure bosonic case, and

also additional structure arising from the formation of boson-fermion molecules, a

prediction for future experiments.

Third, we report large scale calculations of the effective bandwidth, momentum

distribution, and magnetic correlations of the square lattice fermion Hubbard Hamil-

tonian. The sharp Fermi surface of the non-interacting limit is significantly broadened

by the electronic correlations, but retains signatures of the approach to the edges of

xi



the first Brillouin zone as the density increases. Finite size scaling of simulations on

large lattices allows us to extract the interaction dependence of the antiferromagnetic

order parameter, exhibiting its evolution from weak-coupling to the strong-coupling

Heisenberg limit. Our lattices provide improved resolution of the momentum dis-

tribution, allowing a more quantitative comparison with time-of-flight optical lattice

experiments.
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1

Chapter 1

Introduction

1.1 Strongly Correlated Systems

One of the primary goals of science is to explain and, if possible, predict the various

phenomena present in nature. In condensed matter physics, one of the most success-

ful theories of electrons in a material is band theory. Its biggest success is also one of

its biggest failures. By constructing energy bands and filling them up with the known

number of fermions, it was able to explain why certain materials are metallic, semi-

conducting, or insulating. However, it failed at explaining the insulating behavior of

systems in which the electronic correlations are strong. For instance, it incorrectly

predicts the transition metal oxides MnO, FeO, CoO, NiO, and CuO as metals, when

they are in fact insulators. Moreover, band theory produces energy gaps which are

roughly an order of magnitude too small for many insulators and semi-conductors.

Strong correlations play an important role in a wide variety of physical phenomena

besides electrical transport. Electronic correlations are vital components to any de-

scription of the Mott metal-insulator transition and magnetism, charge ordering, and

superconductivity in heavy fermions, the high-Tc superconductors, the Kondo effect,

ultra-cold gases in optical lattices, and others.
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Perhaps the biggest impediment to understanding the correlations in a material is

simulation time. If, for example, we had attempted to simulate the exact interactions

and particle number in a material, the calculation would be for roughly 1023 atoms,

and as such this calculation would take far longer than the lifetime of the universe!

Left with such an unpalatable means of understanding materials, there remains only

one truly viable choice: simplifying the interactions and the number of electrons to

something that can be handled numerically in a reasonable amount of time. In doing

this, we can still gain tremendous insight into the most important mechanisms that

are responsible for different physical phenomena, as this dissertation will demonstrate.

The choice of the model we study in our attempts to understand a particular exper-

iment is influenced by a number of questions. Are the phonon modes important? Is

the electron-electron interaction screened? Is magnetism present? Is it an insulator

or a metal? Does the material superconduct, and, if so, at what concentrations?

There are literally dozens of Hamiltonians that have been studied extensively as

models for the interactions in a solid. Of these, the simplest is the Hubbard model,

H = −t
∑

〈i,j〉

∑

σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ − µ
∑

i

ni , (1.1)

which is the main subject of this dissertation. It was developed independently by

Gutzwiller [1], Hubbard [2–5], and Kanamori [6] in 1963 as a model for electrons

occupying d-bands in transition metals. It has since been used to describe the elec-

tronic properties of solids with small bandwidths, magnetism in the transition metal

oxides (a small selection of the relevant work in this area can be found in Refs. 7–11),

the Mott metal-insulator transition [12, 13], the electronic properties of the high-Tc

cuprates [14–17] and heavy fermions [18], and the properties of ultra-cold atomic

gases confined in an optical lattice [19–25].

In the remainder of this chapter, I will derive the Hubbard Hamiltonian, discuss
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its properties in various limits, its symmetries, and also discuss the properties of two

extensions of the model: the Extended Hubbard and the Bose-Hubbard models. It is

assumed that the reader has a firm understanding of solid state physics [26, 27] and

second quantization [28, 29].

1.2 Fermion Hubbard Model

As mentioned in Sec. 1.1 above, the Hubbard model was developed by Gutzwiller,

Hubbard, and Kanamori [1–6]. There are many excellent reviews of the Hubbard

model that discuss its motivation and properties. I shall, however, refer the reader to

two excellent resources [30, 31] for details not discussed here.

Let us imagine a solid. It is comprised of ions and electrons in a crystalline

structure. Comparatively, the ions are significantly heavier than the electrons and

barely move. It is therefore a reasonable assumption that the ions form a static lattice

and that a many-body Hamiltonian describing the dynamics of the electrons can be

written as

H =
N∑

i=1

( pi

2m
+ Uion(ri)

)
+
∑

i6=j

Ue−e(ri − rj) , (1.2)

where N is the number of electrons in the solid; ri and pi are the electron position

and momenta, respectively; Ri and Pi are the ion position and momenta, where we

take Pi = 0 and the ion positions to be frozen; Uion(r) is the periodic potential of the

ions; and

Ue−e(r) =
e2

‖r‖ (1.3)

is the Coulomb repulsion between the electrons. The first term in the Hamiltonian is

the one-body piece h1, while the second term is a two-body interaction. Equation (1.2)
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can be written in second-quantized form. Let us first consider the eigenstates of the

one-particle Hamiltonian. Because Uion(r) is periodic, the eigenfunctions are Blöch

functions and of the form

ϕαk(r) = eik·ruαk(r) , (1.4)

where uαk(r) has the periodicity of the lattice, α is the band index, and k is the wave

vector. For the following, we shall assume that there is only one band near the Fermi

energy and all remaining bands are completely occupied or empty. This allows us

to ignore the band index, ϕαk(r) = ϕk(r). The Blöch functions ϕk form a basis of

one-particle states.

It is advantageous to instead choose a basis that is localized around the ions.

We therefore choose a basis complementary to the eigenfunctions of the one-particle

Hamiltonian, the Wannier functions

φ(r − Rj) =
1√
L

∑

k

ϕk(r − Rj) , (1.5)

where Rj is a lattice vector and L is the number of ions in the lattice. Here the

Wannier functions φ(r − Rj) are centered about Rj and are orthogonal for different

site indices j. If we express the Blöch functions in terms of the Wannier functions,

we have

ϕk(r) =
1√
L

∑

j

eik·Rjφ(r − Rj) . (1.6)

Next, let us introduce the particle creation operator c†jσ, which creates electrons of

spin σ in the combination of Blöch states ϕk(r) centered at Rj. This allows us to

introduce a corresponding field operator Ψ†
σ(r), which creates an electron of spin σ
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at position r,

Ψ†
σ(r) =

∑

j

φ∗(r − Rj)c
†
jσ . (1.7)

We can relate first and second quantization formalizations for the Hamiltonian by the

formula [28, 32]

H =
∑

σ=↑,↓

∫
d3r Ψ†

σ(r)h1Ψσ(r)

+
1

2

∑

σσ′

∫
d3r

∫
d3r′ Ψ†

σ(r)Ψ†
σ′(r

′)U(r, r′)Ψσ′(r′)Ψσ(r) .

(1.8)

Expressing the Hamiltonian in the basis of Wannier functions yields,

H =
∑

α,i,j,σ

tijc
†
i,σcj,σ +

∑

i,j,k,l

∑

σ,σ′

Uijklc
†
i,σc

†
j,σ′ck,σ′cl,σ . (1.9)

The hopping matrix elements tij are

tij =

∫
dr3 φ∗(r − Ri)h1φ(r − Rj) =

1

L

∑

k

eik·(Ri−Rj)εk (1.10)

The interaction term Uijkl can be expressed as an overlap integral

Uijkl =

∫
d3r

∫
d3r′ φ∗(r − Ri)φ

∗(r′ − Rj)U(r, r′)φ(r′ − Rk)φ(r − Rl) . (1.11)

Equation (1.9), which retains long range interactions, is equivalent to Eq. (1.2), and

the Hubbard model is obtained when the electron-electron interaction is heavily

screened so that only the onsite piece Uiiii remains and when we assume that the

Wannier functions φ(r − Ri) are heavily localized around Ri, as is true in the tight-

binding approximation. Because the Wannier functions are heavily localized, the

hopping matrix elements tij will be largest for nearest neighbor hoppings, allowing
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us to ignore kinetic energy terms that are long range. If we introduce the particle

number operators niσ = c†iσciσ, the Hamiltonian finally reduces to

H = −t
∑

〈i,j〉

∑

σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ . (1.12)

Because the Hamiltonian commutes with the number operator, we can subtract the

term µ
∑

i

ni , where µ is the chemical potential that sets the filling.

There are, of course, numerous descendents to the fermion Hubbard model. Many

of these are discussed in Refs. 33 and 34. I shall consider one of these, the Extended

Fermion Hubbard model, at length in Sec. 1.3.

1.2.1 Limiting Cases

There are a handful of special cases where the Hubbard model has an exact solution.

In one-dimension, the Hubbard model is solved exactly by the Bethe-ansatz [30]. It

can also be solved exactly in the non-interacting limit U = 0 and in the atomic limit

t = 0, which is also referred to as the one-site Hubbard model as the different lattice

sites do not communicate. First, let us examine the non-interacting result. The tight

binding Hamiltonian is

H = −t
∑

〈i,j〉

∑

σ

(
c†iσcjσ + h.c.

)
− µ

∑

i

ni . (1.13)

The creation(annihilation) operator can be expressed in terms of the quasimomentum

by means of a Fourier transform

c†jσ =
1√
L

∑

k

e−ik·Rjc†kσ . (1.14)
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Figure 1.1: Color contour plot depiction of the dispersion relation εsquare(k) in the
non-interacting limit for t = 1 For ε close to the band minimum ε0 = −4t, the Fermi
surface is a circle, as expected since ε(k) ∼ −4 + (k2

x + k2
y). As ε increases, the circles

become increasingly distorted, as seen in Fig. 1.3.

The Hamiltonian therefore becomes

H = − t

L

∑

〈i,j〉

∑

σ

∑

k,k′

(
e−ik·Rieik′·Rj + h.c.

)
c†kσck′σ − µ

L

∑

i

∑

k,k′

ei(k′−k)·Ric†kσck′σ .

(1.15)

Next, we utilize the symmetry of our lattice to sum over nearest neighbors. In turn,

the tight-binding Hamiltonian can be written simply as

H =
∑

kσ

(εk − µ)c†kσckσ , (1.16)

where εk is the dispersion relation. The dispersion relation depends on the symmetry

of the lattice. The dispersion relations for the 1D, square, triangular, and cubic
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Figure 1.2: Energy per site (red) and density ρ (blue) versus chemical potential µ/t
for the U = 0 Hubbard model on a square lattice at βt = 8.

lattices, respectively, are:

ε1D(k) = −2t cos k , (1.17a)

εsquare(k) = −2t(cos kx + cos ky) , (1.17b)

εtriangular(k) = −2t

[
cos kx + 2 cos

(
1

2
kx

)
+ cos

(√
3

2
ky

)]
, (1.17c)

εcubic(k) = −2t(cos kx + cos ky + cos kz) . (1.17d)

Let us examine the properties of the square lattice in the non-interacting limit. In

Fig. 1.1, the dispersion relation is shown as a function of the quasi-momentum. Next,
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in Fig. 1.2, are the energy per site and the filling

ρ =
∑

k

f(k) =
∑

k

[
eβǫ(k)−µ + 1

]−1
(1.18)

as functions of the chemical potential µ (in the units of the hopping parameter t).

Half-filling occurs at µ = 0 and coincides with the minimum in the energy curve.

Lastly, we show the momentum distribution,

n(k) = 〈c†kσckσ〉 , (1.19)

in Fig. 1.3 for densities ρ = 0.1, 0.5, 1.0, 1.5, and 1.9. The momentum distribution

is a representation of the Fermi surface of the system. At low densities, the Fermi

surface is circular. This is also true at high densities, where the unoccupied region of

the Fermi surface is a circle centered around the corners of the first Brillioun zone.

This is a consequence of particle-hole symmetry, present in Eqns. (1.17a), (1.17b),

(1.17d), but not Eq. (1.17c). At half-filling, the square lattice Fermi surface exhibits

perfect nesting with ordering vector Q = (π, π), which, as we shall see in Chapter 5,

is crucial to the antiferromagnetic correlations at half-filling.

Now, what happens when the hopping parameter is turned off? When t = 0 the

different lattice sites are completely disconnected. Thus, we effectively have a one-site

system that has four possible states: |·〉 , |↑〉 , |↓〉 , |d〉 = |↑↓〉. It is clear that we can

use statistical mechanics to exactly solve the Hubbard model in this limit. Before we

discuss the properties, let us shift the chemical potential of the system by a factor of

U/4 so that we can write the Hamiltonian in a more symmetric fashion:

H = U
∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑

i

ni (1.20)

The partition function and the density are



1.2. Fermion Hubbard Model 10

-π -π/2 0 π/2 π
-π

-π/2

0

π/2

π

0.0

0.2

0.4

0.6

0.8

1.0

n(
k)

-π -π/2 0 π/2 π

0.0

0.2

0.4

0.6

0.8

1.0

n(
k)

-π -π/2 0 π/2 π
-π

-π/2

0

π/2

π

-π -π/2 0 π/2 π
-π

-π/2

0

π/2

π

0.0

0.2

0.4

0.6

0.8

1.0

n(
k)

-π -π/2 0 π/2 π
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square lattice in the non-interacting limit for ρ = 0.1, 0.5, 1.0, 1.5, and 1.9 and inverse
temperature βt = 8. The momentum distribution at half-filling, ρ = 1.0, exhibits
perfect nesting with ordering vector Q = (π, π).
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Figure 1.4: Density versus chemical potential µ for the one-site Hubbard model with
U = 4 and inverse temperatures β = 1, 8. Here, for the particle-hole symmetric form
of the interaction U(n↑ − 1

2
)(n↓ − 1

2
), half-filling (ρ = 1) occurs at chemical potential

µ = 0. If the interaction is instead Un↑n↓, then µ = U/2 = 2 gives ρ = 1.

Z = Tr
[
e−βH

]
= e−βU/4 + 2eβ(U/4+µ) + e−β(U/4−2µ) , (1.21)

ρ = Z−1Tr
[
n e−βH

]
=

2
(
eβ(U/4+µ) + e−β(U/4−2µ)

)

e−βU/4 + 2eβ(U/4+µ) + e−β(U/4−2µ)
, (1.22)

respectively. Figure 1.4 shows the density for U = 4 and inverse temperatures β =

1 and 8. The plateau at ρ = 1 is known as the Mott plateau and is one of the

crucial signatures of strong interactions. It is due to the high energy cost in doubly

occupying a site, especially at low temperatures. This is clearly evident in Fig. 1.4,

where for β = 8 the size of the gap is approximately equal to U . In fact, just as

thermal fluctuations can destroy the plateau, so too can t wipe out the effects of

U . Quantum fluctuations make it easier for a particle to overcome the energy gap,

destroying the plateau. For the Hubbard model, the energy ratio U/t is central to
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Figure 1.5: Energy (red) and specific heat C (blue) as functions of temperature for
the one-site Hubbard model with U = 4.

the physics. We can also write expressions for the energy, specific heat, and local

moment 〈m2〉 ≡ 〈(n↑ − n↓)
2〉. At half-filling, we find

E = Z−1Tr
[
H e−βH

]
= −U

4
tanh

(
βU

4

)
, (1.23)

C =
dE

dT
=

(
βU

4

)2

sech2

(
βU

4

)
, (1.24)

〈m2〉 = Z−1Tr
[
(n↑ − n↓)

2e−βH
]

=
(
1 + e−βU/2

)−1
. (1.25)

In Fig. 1.5, we show the energy and specific heat versus temperature for U = 4. Here

the peak in the specific heat is simply the Schottky anomaly. At µ = 0, the one-site

Hubbard Hamiltonian is a two-level system, and the increase in C at low temperatures

is due to thermal population of the discrete energy levels. Next, Fig. 1.6 shows the

local moment for U = 4, 8 as a function of temperature and for temperatures T =



1.2. Fermion Hubbard Model 13

0.5

0.6

0.7

0.8

0.9

1.0

 0  5  10  15  20

U = 4   
U = 8   

0.5

0.6

0.7

0.8

0.9

1.0

 0  2  4  6  8  10  12  14

T = 1   
T = 1/8

U

T

(a)

(b)

〈m
2
〉

〈m
2
〉

Figure 1.6: Local moment 〈m2〉 for the one-site Hubbard model at half-filling (a) as
a function of temperature T for U = 4, 8 and (b) as a function of interaction strength
U for temperatures T = 0.125, 1.

0.125, 1 as a function of U . For weak interaction and large temperatures, 〈m2〉 = 0.5,

whereas as for large U or low temperatures, a moment forms and the local moment

approaches 1.

1.2.2 Symmetries

The Hubbard model has a number of symmetries that can be exploited. In particular,

we are interested in two such symmetries: spin-rotational invariance and particle-hole

symmetry.

It should be fairly obvious that the kinetic energy term of the Hubbard Hamil-

tonian is already spin-rotationally invariant (as we chose a basis with the spin in

the z-direction). The invariance of the interaction term is not quite obvious. Let us
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rewrite it as follows:

nj↑nj↓ = c†j↑cj↑c
†
j↓cj↓ = c†j↑cj↑(1 − cj↓c

†
j↓) = nj↑ − S+

j S−
j . (1.26)

where the spin raising operator S+
j = c†j↑cj↓ converts a spin-down fermion to spin-up

and S−
j = (S+

j )†. We can write a similar expression for the interaction term

nj↑nj↓ = nj↓ − S−
j S+

j . (1.27)

Next, let us take the square of the z-component of the spin,

(Sz
j )

2 =
1

4
(nj↑ − nj↓)

2 =
1

4
(n2

j↑ − 2nj↑nj↓ + n2
j↑) =

1

4
(nj − 2nj↑nj↓) . (1.28)

where we have used n2
jσ = njσ and nj = nj↑ + nj↓. Solving for the interaction term

yields

nj↑nj↓ =
1

2
nj − 2(Sz

j )
2 . (1.29)

Combining Eqns. (1.26), (1.27) and (1.29), we find that the interaction term becomes

nj↑nj↓ =
1

2
nj −

2

3
S2

j (1.30)

and that the part of the Hubbard Hamiltonian becomes

UN

2
− 2U

3

∑

j

S2
j . (1.31)

By expressing the Hamiltonian in this fashion, it is clear that the system is spin-

rotationally invariant. Furthermore, it can easily be shown that the number operator

commutes with the Hamiltonian, [njσ, H] = 0. As a result, the z-component of the
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spin will also commute with the Hamiltonian, [Sz
j , H] = 0, and Sz is conserved by the

Hubbard model. By symmetry, there is no difference between Sx, Sy, and Sz, and the

Hamiltonian actually commutes with all three terms. However, the three operators

do not commute with each other,

[Sx, Sy] = iSz , [Sz, Sx] = iSy , [Sy, Sz] = iSx , (1.32)

and we generally choose a basis in terms of the z-component of the spin for conve-

nience.

Next, let us examine the particle-hole symmetry of the Hubbard model. For

the purposes of this discussion, we will use the form of the interaction term given

in Eqn. (1.20) and a more general expression for the kinetic energy term than just

nearest neighbor hopping to write the Hubbard Hamiltonian as

H = −1

2

∑

j,l

∑

σ

(tjlc
†
jσclσ + t∗jlc

†
lσcjσ) + U

∑

j

(
nj↑ −

1

2

)(
nj↓ − 1

2

)
. (1.33)

Let us transform an electron of spin σ into a hole of spin σ by c†jσ → cjσ, cjσ → c†jσ.

The occupation numbers njσ → cjσc
†
jσ = 1 − njσ. The interaction term remains the

same, as a factor of −1 appears in from both the spin-up and spin-down terms. The

hopping term becomes

tjlc
†
jσclσ + t∗jlc

†
lσcjσ → −t∗jlc

†
jσclσ − tjlc

†
lσcjσ , (1.34)

which is completely different from what it was before. Thus, the Hubbard model

does not generally show particle-hole symmetry. However, if the lattice is bipartite,

meaning that it can be decomposed into two sublattices A and B such that the

neighbors of A are in sublattice B, then the minus sign in Eq. (1.34) can be taken
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care of with the transformation:

c†jσ → ηjcjσ cjσ → ηjc
†
jσ (1.35)

where

ηj =






1 if j ∈ A

−1 if j ∈ B .

(1.36)

Thus, for nearest neighbors ηjηℓ = −1 and, as tjℓ is nonzero only for j, ℓ on separate

sublattices, the hopping term reverts to its original form.

If we do the particle-hole transformation on only one spin species,

cj↑ → cj↑ cj↓ → (−1)jc†j↓ , (1.37)

then we get the following:

1. The hopping term is unchanged for the down-spin electron provided the lattice

is bipartite.

2. The sign of the interaction changes: U → −U .

3. The chemical potential becomes a magnetic field: µ ↔ Bz.

4. Spin and charge correlation functions interchange

nj↑ − nj↓ ↔ nj↑ + nj↓ . (1.38)

5. The + spin and − spin correlations (S+ and S−) become s-wave pairing corre-
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lations

c†j↑cj↓ ↔ c†j↑c
†
j↓ (1.39)

c†j↓cj↑ ↔ cj↓cj↑ . (1.40)

Thus, we see that the half-filled (µ = 0) Hubbard model becomes the half-filled

negative U Hubbard model, where both charge density wave and superconducting

order exist simultaneously because of the xyz symmetry of the positive U Hubbard

model! Thus, the half-filled system is a supersolid [35], meaning that it is spatially

ordered but also has the characteristics of a superfluid, i.e. there is no friction. Lastly,

when we move away from half-filling, we find that the system is a superconductor [36].

1.3 Extended Fermion Hubbard Model

In the fermion Hubbard model, the interaction is heavily screened and charge ordering

does not play a large role in determining the physics of the system. But what if this

is important, as it is in charge transfer solids and in conducting polymers? There

is no mechanism in the fermion Hubbard model to handle charge ordering, and we

need to modify our treatment of the overlap integral [Eq. (1.11)] to include intersite

interactions. The simplest treatment of intersite interactions is to include nearest-

neighbor interactions V , which we shall refer to as the Extended Hubbard model,

H = −t
∑

〈i,j〉

∑

σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ + V
∑

〈i,j〉

ninj − µ
∑

i

ni . (1.41)



1.3. Extended Fermion Hubbard Model 18

 0

 5

 10

 15

 20

 0  2  4  6  8  10

SDW

CDW

U

V

↑ ↓ ↑ ↓
↓ ↑ ↓ ↑
↑ ↓ ↑ ↓
↓ ↑ ↓ ↑

↑↓ · ↑↓ ·
· ↑↓ · ↑↓
↑↓ · ↑↓ ·
· ↑↓ · ↑↓

Figure 1.7: Phase diagram for the Extended Hubbard model in the strong-coupling
limit t = 0 at half-filling. The boundary between the spin density wave and charge
density wave phases lies on the line U = 2V . The transition is first-order.

1.3.1 Strong Coupling Limit

In the strong coupling limit t = 0, the phase diagram of the extended Hubbard model

at zero temperature can be determined exactly. At half-filling, there are two possible

ground states for the system: a charge density wave (CDW) or a spin density wave

(SDW). The ordering vector for the SDW phase is Q = (π, π), although doping the

system away from half-filling causes Q to change and increases the wavelength of the

SDW phase. The ground state energies are

ECDW =
1

2
NU , ESDW = NV . (1.42)

By equating these energies, we can determine the phase boundary to be U = 2V (see

Fig. 1.7). Strong coupling perturbation theory to second order in the hopping [37, 38]
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yields the following:

E
(2)
CDW = N

[
U

2
+

2t2

3V − U

]
(1.43)

E
(2)
SDW = N

[
V +

4t2 ln 2

U − V

]
(1.44)

We can determine how the phase boundary shifts by setting U = 2V and looking at

both energies. We find

ECDW = N

[
U

2
+

t2

U

]
(1.45)

ESDW = N

[
U

2
− 8t2 ln 2

U

]
. (1.46)

Thus, ESDW < ECDW and the phase boundary in Fig. 1.7 is shifted down by the

quantum fluctuations. In order to understand the reason for this, let us consider the

entropy of each phase at t = 0. The degeneracy of the SDW phase is

(
N

N/2

)
while

the CDW phase is only doubly degenerate. As the hopping is turned on, the large

degeneracy is lifted and lowers the energy more for the SDW phase.

1.3.2 Bond Ordered Wave Controversy

There is some controversy over the phase diagram of the Extended Hubbard Hamilto-

nian at weak-coupling. The original studies of this model with renormalization group

found only SDW and CDW regions defined by a second-order transition at weak

coupling that changes at a tricritical point to a first-order transition at strong cou-

pling [37, 39, 40]. QMC simulations with the stochastic series expansion discovered

something quite different at weak coupling, a bond order wave (BOW) phase that

transitions to SDW via a Kosterlitz-Thouless and also to CDW by a second-order

transition [41]. The BOW phase is distinguished by the kinetic energy alternating

between two values as one moves through the lattice. A schematic drawing of the
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i − 2 i − 1 i i + 1 i + 2 i + 3

Figure 1.8: Illustration of a BOW phase. The thick lines indicate a high kinetic
energy while the thin lines indicate a small kinetic energy.

phase in one dimension is shown in Fig. 1.8. To add to this controversy, density ma-

trix renormalization group calculations [42–44] find that the BOW phase only exists

precisely on the SDW-CDW transition line instead of over an extended region. In

addition, the BOW phase began at finite, nonzero coupling (unlike the Stochastic

Series Expansion (SSE) calculation which began at U = V = 0). At the time of this

writing, it is clear that the BOW phase does exist in real materials, as the phase

has been found experimentally in Rb-TCNQ(II) [45]. The exact details of the phase

diagram of the extended Hubbard Hamiltonian, however, remain unclear.

1.4 Summary of the Main Results

In the decades following its proposal in the mid-1960’s, the Hubbard model was

extensively studied by approximate analytic techniques like the random phase ap-

proximation, renormalization group approaches, series expansions, and strong- and

weak-coupling perturbation theories. Then, beginning in the mid-to-late 1980’s, quan-

tum Monte Carlo methods were developed and brought to bear. It is the application

of these latter techniques to some new areas of Hubbard Hamiltonian physics that

will be the topic of this thesis.

The remainder of this dissertation is organized in the following manner. In Chap-

ter 2, the theoretical background of path integral quantum Monte Carlo is reviewed

and both world-line quantum Monte Carlo (WLQMC) and determinant quantum

Monte Carlo (DQMC) are discussed in detail. Then, in Chapter 3, I separately exam-

ine the impact of static and dynamic fluctuations on the one-dimensional extended
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fermion Hubbard Hamiltonian. Next, Chapter 4 is a discussion of the visibility, a

quantity central to optical lattice experiments, in the one-dimensional Bose-Fermi

Hubbard Hamiltonian with a harmonic trap. Chapter 5 examines the single particle

properties and magnetic correlations in the two-dimensional fermion Hubbard model.

This chapter also introduces a computationally convenient definition of the structure

factor that allows for a more accurate linear fit and extrapolation of the order param-

eter. Finally, in Chapter 6, I discuss some of the conclusions of my dissertation work

and the open questions that remain to be studied, particularly the effect of adding

an optical trap to the two-dimensional fermion Hubbard model. Chapters 3-5 are all

based on published journal articles (See Refs. 25, 46 and 47).
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Chapter 2

Path Integral Quantum Monte

Carlo for Lattice Fermions

2.1 Introduction

In this chapter, I will review two quantum Monte Carlo (QMC) methods for lattice

fermions, the world-line [1] and determinantal [2] algorithms. It is assumed that

the reader have a firm grasp of statistical mechanics [3–5] and classical Monte Carlo

techniques (See Ref. 6, Chapter 1 of Ref. 7, and Chapter 2 of Ref. 8).

Let us consider a Hubbard Hamiltonian with particle-hole symmetry:

H = K + V ,

K = −t
∑

〈i,j〉

(
c†iσcjσ + c†jσciσ

)
− µ

∑

i,σ

niσ ,

V = U
∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
.

(2.1)

Here c†jσ (cjσ) are creation (annihilation) operators for a fermion of spin σ on site j

and number operator nj = c†jσcjσ.

Both algorithms originate from the Feynman path-integral representation of the
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quantum fields [9]. The partition function Z and the average value of a physical

observable A are

Z = Tr(e−βH) , (2.2)

A = Z−1Tr(Ae−βH) , (2.3)

where β = 1/kT is the inverse temperature. In order to evaluate the trace, we

must break up the imaginary-time interval 0 ≤ τ ≤ β into L subintervals of width

∆τ = β/L (note that in Chapter 3 we use ǫ in place of ∆τ to avoid confusion with

another variable) and utilize the Suzuki-Trotter decomposition [10, 11]

Z = Tr
[
e−βH

]
= Tr

[
lim

∆τ→0

(
e−∆τKe−∆τV

)L]
(2.4)

to split up the kinetic and interaction terms. This Suzuki-Trotter approximation

introduces errors in measurements [12, 13],

e−∆τH = e−∆τKe−∆τV
{
1 + (∆τ 2)[K,V ]

}
, (2.5)

which are commonly referred to as “Trotter” errors. Thus, for a Hamiltonian in which

K and V commute, the Suzuki-Trotter decomposition is exact. For the Hubbard

Hamiltonian, this is not the case and in order to minimize the Trotter error we must

keep the quantity Ut(∆τ)2 small (typically less than 1/8 is considered acceptable).

Although we follow the prescription outlined above, there are many ways to reduce

the error by using different Suzuki-Trotter decompositions [14].

There are two different prescriptions for evaluating the traces in Eqns. (2.2) and

(2.3). The first method, world-line quantum Monte Carlo (WLQMC), introduces a

complete set of states at each time slice and the sums are carried out by importance

sampling techniques. The second method employs an auxiliary bosonic field to in-
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tegrate out the fermionic fields and is known as determinant quantum Monte Carlo

(DQMC). In the sections that follow, I will discuss the details of both algorithms and

a major difficulty of QMC simulations of fermions known as the sign problem.

2.2 World-Line Quantum Monte Carlo

World-line quantum Monte Carlo (WLQMC) was developed for Hubbard models

by Hirsch, Sugar, Scalapino and Blankenbecler in 1982 [1]. The path integral in

Eq. (2.4) is treated by inserting complete sets of fermion occupation number states

I =
∑ |nj,ℓ,σ〉 〈nj,ℓ,σ| for both the trace and at all imaginary-times. Here, j is the site

index, ℓ is the index for the time slice, σ is the spin. This yields

Z =Tr
[
e−βH

]
= Tr

[
lim

∆τ→0

(
e−∆τKe−∆τV

)L]

Z =
∑

i
1
,...,i

L

〈
i1

∣∣∣ e−∆τKe−∆τV
∣∣∣ iL
〉〈

iL

∣∣∣ e−∆τKe−∆τV
∣∣∣ iL−1

〉
· · ·

×
〈
i2

∣∣∣ e−∆τKe−∆τV
∣∣∣ i1
〉

(2.6)

where the state |iℓ〉 is the occupation number state at time slice ℓ,

|iℓ〉 = |n1,ℓ,↑n2,ℓ,↑ · · ·nN,ℓ,↑n1,ℓ,↓n2,ℓ,↓ · · ·n1,ℓ,↓〉 . (2.7)

The matrix elements in Eq. 2.6 are easily determined when we notice that the Hamil-

tonian is factorizable: it consists of independent two-site pieces. This is achieved by

subdividing the kinetic energy K into Kodd and Keven via the “checkerboard decom-
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Figure 2.1: Checkerboard pattern that results from the breakup of the time-evolution
operator. World-lines can only traverse diagonals of shaded squares. The bolded lines
are examples of allowed fermion world-lines, and the arrows indicate a typical Monte
Carlo move that pulls a world-line across an unshaded square. Periodic boundary
conditions connect sites and imaginary-time slices at the edges of the lattice.

position” [1]

K = Kodd + Keven (2.8a)

Kodd = −t
∑

i odd

∑

σ

(c†i+1,σci,σ + c†i,σci+1,σ) , (2.8b)

Keven = −t
∑

i even

∑

σ

(c†i+1,σci,σ + c†i,σci+1,σ) . (2.8c)

This allows us to write the matrix elements of the trace as

〈
00
∣∣∣ et∆τ(c†i ci+1

+c†i+1
ci )e−∆τU(n

i,↑
−1/2)(n

i,↑
−1/2)

∣∣∣ 00
〉

= e−∆τU/4 ,

〈
11
∣∣∣ et∆τ(c†i ci+1

+c†i+1
ci )e−∆τU(n

i,↑
−1/2)(n

i,↑
−1/2)

∣∣∣ 11
〉

= e−∆τU/4 ,

〈
10
∣∣∣ et∆τ(c†i ci+1

+c†i+1
ci )e−∆τU(n

i,↑
−1/2)(n

i,↑
−1/2)

∣∣∣ 10
〉

= cosh(t∆τ)e∆τU/4 ,

〈
10
∣∣∣ et∆τ(c†i ci+1

+c†i+1
ci )e−∆τU(n

i,↑
−1/2)(n

i,↑
−1/2)

∣∣∣ 01
〉

= sinh(t∆τ)e∆τU/4 .

(2.9)

The allowed moves in the WLQMC algorithm can be visualized simply. In Fig. 2.1,

the checkerboard pattern in space and imaginary-time is shown with several allowed
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fermion world-lines. If a fermion hops from one site to another, the world-line can

only move through the diagonal of a shaded square. It cannot traverse the diagonal

of an unshaded square.

When U = 0, there is a very simple interpretation of the weights in Eq. (2.9) [1].

A single fermion hops one site to the left or the right or moves forward in imaginary-

time with matrix element sinh(t∆τ) and cosh(t∆τ), respectively. This explains the

elements 〈10| . . . |10〉 = cosh(t∆τ) and 〈10| . . . |01〉 = sinh(t∆τ). Two fermions can

interchange by hopping past each other with matrix element − sinh2(t∆τ). Lastly,

two fermions on adjacent sites can move forward in imaginary-time with matrix

element cosh2(t∆τ). The combination of these processes, along with the identity

cosh2 − sinh2 = 1, yields 〈11| . . . |11〉 = 1.

The WLQMC algorithm has been modified beyond the simple local update method

described here. Of particular note are the loop algorithm [15], the continuous time

versions of the local update algorithm [16] and the loop algorithm [17], and the worm

algorithm [18]. While not discussed here, these developments and the local update

algorithm of this section are reviewed in Refs. 8 and 19–24.

2.3 Determinant Quantum Monte Carlo

2.3.1 Multidimensional Gaussian Integrals

Determinant quantum Monte Carlo (DQMC) shares many similarities with multidi-

mensional Gaussian integrals. Let us recall the one-dimensional Gaussian integral,

∫ ∞

−∞

dx e−ax2

=

√
π

a
. (2.10)
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Generalizing this formula to many dimensions, we find

Z =

∫ ∞

−∞

· · ·
∫ ∞

−∞

dx1dx2 . . . dxN e−x·A·xT

=
πn/2

√
det A

, (2.11)

which we recall is the form of the partition function for a set of classical variables

whose action is given by x · A · xT [4]. When the integrand includes factors of xi, as

it would for an expectation value in statistical mechanics, the integral becomes

〈xixj〉 = Z−1

∫ ∞

−∞

· · ·
∫ ∞

−∞

dx1dx2 . . . dxN xixje
−x·A·xT

=
1

2

[
A
−1
]
ij

. (2.12)

Adding additional factors of xi to the integrand yields,

〈xixjxkxl〉 = Z−1

∫ ∞

−∞

· · ·
∫ ∞

−∞

dx1dx2 . . . dxN xixjxkxle
−x·A·xT

=
1

4

([
A
−1
]
ij

[
A
−1
]
kl

+
[
A
−1
]
ik

[
A
−1
]
jl

+
[
A
−1
]
il

[
A
−1
]
jk

)
,

(2.13)

which is similar in form to “Wick’s Theorem.” This theorem tells us that contractions

of products of many fermion operators can be expressed as a sum of products of

contractions, where the contractions are taken two operators at a time and the sum

is over all possible permutations [25].

In Sec. 2.3.2, we will see that these quantities are directly related to the Hubbard-

Stratonovich transformation [26] and the formulas for the partition function and

Green’s function.

2.3.2 Formalism

The determinant quantum Monte Carlo algorithm was developed by Blankenbecler,

Scalapino, and Sugar (BSS) [2]. Like world-line quantum Monte Carlo, it is based on

Feynman’s path integral formulation of statistical mechanics and utilizes the Trotter

discretization of β to arrive at Eq. (2.4). The trace can be done if the Hamiltonian
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in Eq. (2.1) is quadratic in terms of the fermion operators

H =
∑

ij

c†i hij cj . (2.14)

Here h is an N × N matrix. The kinetic energy K is already in the correct form,

but V is quartic in fermion operators. To handle this term, we employ the discrete

Hubbard-Stratonovich transformation [26],

e−U∆τ(n
i↑
− 1

2)(n
i↓
− 1

2) =
1

2
e−U∆τ/4

∑

si=±1

eλsi(n
i↑
−n

i↓) (2.15)

where cosh λ = eU∆τ/2 and si is an Ising variable referred to as the Hubbard-

Stratonovich (HS) field. Other ways of reducing the Hamiltonian have been developed

[27–29] and the effects of different transformations are briefly discussed in Section 2.4.

Now that we can write the Hamiltonian in quadratic form, we can evaluate the

trace in the path integral with the identity

Z = Tr
[
e−βH

]
= det

[
I + e−βh

]
, (2.16)

where I is an N ×N identity matrix. More generally, as we have discretized β via the

Suzuki-Trotter decomposition, we have a set of quadratic Hamiltonians (one for each

time slice). The Hubbard-Stratonovich transformation is applied at every time slice,

and the Hubbard-Stratonovich field si(ℓ) has two indices, space i and imaginary-time

ℓ. The set of Hamiltonians is therefore defined as

H(ℓ) =
∑

ij

c†i hij(ℓ) cj , (2.17)
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and the resultant identity for the partition function is

Z = Tr
[
e−∆τH(L)e−∆τH(L−1) · · · e−∆τH(1)

]

= det
[
I + e−∆τh(L)e−∆τh(L−1) · · · e−∆τh(1)

]
.

(2.18)

The partition function becomes

Z =
∑

{si(ℓ)}

∏

σ

det M
σ , (2.19)

with

M
σ = I + B

σ
LB

σ
L−1 · · ·Bσ

1 , (2.20)

and

B
σ
ℓ = e−∆τke−∆τv

σ(ℓ) . (2.21)

Here k is an N × N matrix defined by

kij =






−t if i and j are nearest neighbors,

−µ along the diagonal,

0 otherwise,

(2.22)

and vσ(ℓ) is a diagonal N × N matrix where the ii-th element is

v
σ
ii(ℓ) = λσsi(ℓ) . (2.23)

The quantum partition function has now been expressed as a classical Monte Carlo

problem for an Ising field in d + 1 dimensions. The most naive approach to the



2.3. Determinant QMC 33

simulation would involve flipping a HS spin, evaluating the “Boltzmann weight,” and

accepting with the Metropolis algorithm. If we let {s′} and {s} be two sets of HS

configurations such that all of the Ising spins are the same except for the ones on site

i and imaginary-time slice ℓ, then the ratio of the “Boltzmann weights” is

R =
P ({s′})
P ({s}) =

∏

σ

Rσ , (2.24)

where the ratio of fermion determinants is

Rσ =
det Mσ({s′})
det Mσ({s}) . (2.25)

The cpu time for each move would be O(N3). Thus, updating all of the HS fields

would require a cpu time of O(N4). Fortunately, a clever approach can reduce this

scaling to O(N3). If a single spin is flipped on site i and time slice ℓ, the ii-th element

of the matrices v↑(ℓ) and v↓(ℓ) change, affecting B
↑
ℓ and B

↓
ℓ , respectively. The HS field

si(ℓ) → −si(ℓ), and the change in the matrix element vσ
ij(ℓ) is

δvσ
ij(ℓ) = v

σ
ij(ℓ,−s) − v

σ
ij(ℓ, s) = −2λσsi(ℓ)δij . (2.26)

The change in the matrix Bσ
ℓ → [Bσ

ℓ ]′ can be written as a matrix product,

[Bσ
ℓ ]′ = B

σ
ℓ ∆σ

ℓ (i) , (2.27)

where the elements of the matrix ∆σ
ℓ (i) are

[∆σ
ℓ (i)]jk =






0 if j 6= k ,

1 if j = k 6= i ,

e−2λσsi(ℓ) if j = k = i .

(2.28)
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In order to write the ratio of the fermion determinants, we require the Green’s func-

tion, which plays an important role in the DQMC algorithm. The equal-time Green’s

function is defined as

[Gσ]ij ≡
〈
ciσc

†
jσ

〉
= Z−1Tr

[
ciσc

†
jσe

−∆τh(L)e−∆τh(L−1) · · · e−∆τh(1)
]

. (2.29)

In analogy with the relationship in Eq. (2.12), we find that the equal-time Green’s

function matrix can be written as

[Gσ]ij = [Mσ]−1
ij . (2.30)

The Green’s function matrix at the ℓ-th time slice is defined as

[Gσ
ℓ ]ij ≡

〈
ciσ(ℓ)c†jσ(0)

〉
= [I + A

σ
ℓ ]−1

ij , (2.31)

where

Aσ
ℓ ≡ B

σ
ℓ−1B

σ
ℓ−2 · · ·Bσ

1B
σ
L · · ·Bσ

ℓ . (2.32)

Using Eq. (2.31) and the cyclic properties of the determinant, we can rewrite the ratio

of the fermion determinants as

R =
det[1 + Aσ

ℓ ∆σ
ℓ (i)]

det[1 + Aσ
ℓ ]

= det [(1 + A
σ
ℓ ∆σ

ℓ (i)) G
σ
ℓ ]

= det [1 + (1 − G
σ
ℓ ) (∆σ

ℓ (i) − 1)] = 1 + (1 − [Gσ
ℓ ]ii)

(
e−2λσsi(ℓ) − 1

)
,

(2.33)

which is a rank-1 update that depends only on the HS field and the Green’s function.

The Green’s function can be updated in two ways: from scratch by Eq. (2.31) or by

iterating the “old” Green’s function, referred to as “wrapping.” One can show that
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the Green’s function at time slice ℓ + 1 can be written as

G
σ
ℓ+1 = B

σ
ℓ G

σ
ℓ [Bσ

ℓ ]−1 . (2.34)

Computing the Green’s function from scratch requires O(N4L) operations. “Wrap-

ping” the Green’s function reduces the computational complexity by a factor of 2 or

3. In all, the rank-1 update for the determinant ratio in conjunction with “wrapping”

the Green’s function reduces the computational complexity by an order of magnitude

in N , although it is important to note that “wrapping” is not numerically stable as

round-off errors propogate rapidly when performing matrix inversions and multipli-

cations. In practice, we find that it is necessary to recompute the Green’s function

from scratch after “wrapping” about 10 times.

From the Green’s function matrix, we can determine a number of quantities. The

density of electrons of spin σ on a given site i is

〈niσ〉 = 〈c†iσciσ〉 = 1 − 〈ciσc
†
iσ〉 = 1 − [Gσ]ii . (2.35)

The double occupancy and local moment are

〈ni↑ni↓〉 =
(
1 −

[
G
↑
]
ii

) (
1 −

[
G
↓
]
ii

)
, (2.36)

〈
m2
〉

=
〈
(ni↑ − ni↓)

2
〉

=
[
G
↑
]
ii

+
[
G
↓
]
ii
− 2

[
G
↑
]
ii

[
G
↓
]
ii

, (2.37)

respectively. We can examine the magnetic, charge, superconducting order by looking

at correlation functions of the form:

c(ℓ) =
〈
Oi+ℓO

†
i

〉
−
〈
Oi+ℓ

〉〈
O†

i

〉
, (2.38)

where for spin order in the xx direction, spin order in the zz direction, charge order,
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and superconductivity we have

Oxx spin
i = c†i↓ci↑ , (2.39a)

Ozz spin
i = ni↑ − ni↓ , (2.39b)

Ocharge
i = ni↑ + ni↓ , (2.39c)

Opair
i = ci↓ci↑ . (2.39d)

The correlation functions are evaluated through the use of “Wick’s Theorem” [25],

which allows us to express these measurements in terms of the Green’s function. For

example, the spin-spin correlation function in the xx direction is

cxx spin(ℓ) =
〈
c†i+ℓ,↓ci+ℓ,↑c

†
i,↑ci,↓

〉
−
〈
c†i+ℓ,↓ci+ℓ,↑

〉〈
c†i,↑ci,↓

〉

=
[
G
↑
]
i+ℓ,i

(
δℓ,0 −

[
G
↓
]
i,i+ℓ

)
.

(2.40)

The DQMC algorithm has been heavily studied since its inception in 1981. There

are many aspects of the technique which are not discussed here, as they have already

been reviewed in Refs. 7, 22–24 and 30. I will, however, discuss two ways in which

the algorithm can be improved, and also, in Sec. 2.4, a major difficulty in QMC

simulations.

As with any Monte Carlo technique, one is always interested in ways reduce the

computational time and improve the ergodicity of the algorithm. Perhaps the simplest

improvement one can make is to incorporate modern BLAS/LAPACK numerical ker-

nels, which can handle matrix multiplication, inversion, and determinant calculation

efficiently. In practice, the use of BLAS/LAPACK reduces computational time by a

factor of 2 to 3. The computational complexity can be also reduced by introducing

“delayed updating” of the Green’s functions [31, 32]. In the algorithm described in

this Section, every time a HS field is flipped, the N × N Green’s function matrix at

this position must be updated. Because only the determinant ratio R and a diagonal
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entry of Gℓ are required to accept or reject a Monte Carlo move, it is possible to

delay multiple rank-1 updates and perform a rank-k update, where k is the number

of Monte Carlo moves performed between updates. This results in reducing the com-

putational effort to calculate the transition probability R for the delayed algorithm

from N2L2 to kNL.

At large interaction strength, the algorithm described above experiences well-

known problems with ergodicity. One manifestation of this difficulty results in a

breaking of the spin-flip symmetry 〈n↑〉 6= 〈n↓〉. Furthermore, we note that the values

of these quantities will precisely equal i/N , where i is an integer and N is the lattice

size. One way of overcoming this problem with ergodicity is by introducing global

moves [33]. Instead of flipping the Hubbard-Stratonovich field for one spatial site

and one imaginary-time slice, we instead flip the fields for all imaginary-time slices

on a given site. This move has the effect of transforming ni,σ to ni,−σ. A global move

of this sort requires a recalculation of the fermion determinant before and after the

move. The improved ergodicity comes with a cost: the orthogonalization necessary to

ensure stability during recomputation of the determinant has components that scale

as N2L2 as well as N3.

2.4 Sign Problem

The expectation value of a physical observable A is of the general form

〈A〉 =

∑

{x}

w(x)A(x)

∑

{x′}

w(x′)
, (2.41)

where
∑

{x}

is a sum over discrete spin variables. In the grand canonical ensemble, w(x)

is proportional to the fermion determinants for the spin-up and spin-down electrons
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Figure 2.2: Average sign 〈S〉 vs. β on a 10 × 10 lattice for U = 4t and 8t. The
chemical potentials are µ = −t and −3t, respectively, leading to fillings 〈n〉 ∼ 0.83
and 0.75. 〈S〉 = 1 for high temperatures before it exponentially approaches 0.

[2]. As long as w(x) is positive semidefinite, then Eq. (2.41) can be evaluated by

importance-sampling techniques, where a sequence of configurations {x} is generated

with a probability distribution

P (x) =
w(x)∑

{x′}

w(x′)
. (2.42)

Unfortunately, for simulations of fermions there are only a small number of cases in

which w(x) is positive semidefinite. One such example is the negative-U Hubbard

model. Another example of larger interest to the remainder of this dissertation is the

half-filled Hubbard model with a repulsive Coulomb interaction. When we dope this

model away from half-filling, w(x) is not positive semidefinite, and we can write the
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Figure 2.3: Average sign 〈S〉 vs. 〈n〉 for various lattice sizes at U = 4t and βt = 6.
The sign problem is the worst for fillings 0.65 ≤ 〈n〉 ≤ 0.95. Also, 〈S〉 depends weakly
on the lattice size, with the largest lattices experiencing the smallest 〈S〉.

weight w(x) as

w(x) = |w(x)|S(x) . (2.43)

Here S(x) = ±1. We can define a new probability distribution,

P̄ (x) =
|w(x)|∑

{x′}

|w(x′)|
, (2.44)

allowing us to rewrite Eq. (2.41) as [34]

〈A〉 =
〈AS〉P̄
〈S〉P̄

, (2.45)
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Figure 2.4: Average sign 〈S〉 vs. 〈n〉 for interaction strengths U = 2t, 3t, 4t, 5t, and
6t on a 6×6 lattice at βt = 6. At the weakest couplings, the sign problem is virtually
nonexistent, while for U ≥ 4t, 〈S〉 → 0 for densities 0.65 ≤ 〈n〉 ≤ 0.95.

where 〈 〉P̄ indicates an average with respect to the probability distribution P̄ . As

long as 〈S〉P̄ ∼ 1, then we can obtain useful information about the system [34, 35].

When the sign deviates from 1, we must account for it in our measurement by means

of Eq. (2.45).

〈S〉P̄ depends on a multitude of factors. The most important of these are the

inverse temperature β, the system size N , and the particle number. As seen in

Refs. 34 and 35, the sign falls off exponentially with β. This is illustrated in Fig. 2.2

for a 10 × 10 lattice at U = 4t and 8t. Furthermore, it has been shown that the sign

also depends on the particular path integral formulation [27]. For example, the world-

line algorithm has no sign problem in one-dimension as the weights are all positive

semidefinite, but in higher dimensions the sign problem is severe. For the DQMC

algorithm, the type of Hubbard-Stratonovich transformation can have an enormous
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effect on 〈S〉 [27–29].

Next, in Fig. 2.3, we show the dependence of the sign on the lattice filling 〈n〉

for different lattice sizes. The sign problem is at its worst in the region surrounding

〈n〉 = 0.85, which is extremely problematic for any attempt at using the Hubbard

model to explain the high-Tc superconductivity of the cuprates. We do note, however,

that although increasing the size of the system does impact 〈S〉, it does so weakly

and there is little difference between the average sign for a 10 × 10 and a 24 × 24

lattice (which contains nearly 6 times the number of sites!).

The fermion sign problem has been studied extensively in the literature. Addi-

tional information can be found in Refs. 7, 24, 27, and 30.
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Chapter 3

Static versus dynamic fluctuations

in the one-dimensional Extended

Hubbard Model

The work described in this Chapter was done in collaboration with Helen Craig,

Warren Pickett, and Richard Scalettar. It has been published in Reference 1.

3.1 Introduction

The study of strong interaction effects in low-dimensional systems remains one of the

most active fields of research in condensed matter physics. The extended Hubbard

Hamiltonian (EHH) has been widely explored as a model of correlation effects in

tight-binding systems and, more specifically, for the competition between different

types of ground state order: charge density wave, antiferromagnetism, and, in the

case of attractive interactions, superconductivity. In one dimension, it has also been

used to understand the behavior of materials including conducting polymers [2] and

organic superconductors [3].

The ground state phase diagram of the one-dimensional EHH was first obtained
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within a weak coupling renormalization group (RG) calculation [4, 5]. For repulsive

on-site interactions U which are sufficiently large compared to the intersite repulsion

V , specifically, for U > 2V , the ground state is a spin density wave (SDW) phase,

with power law decay of spin correlations. For 2V > U , the ground state has charge

density wave (CDW) order. These charge correlations exhibit true long range order,

that is, they go asymptotically to a nonzero value at large separations, since the

associated broken symmetry is discrete. Finally, for attractive intersite interactions,

singlet and triplet superconducting phases exist at T = 0, again with power law

decays of the associated correlation functions.

Subsequent to the RG work, the question of the order of the transitions between

these different phases was studied, with a prediction that for repulsive U and V

second-order SDW-CDW transitions at weak coupling were separated by a tricritical

point from first-order transitions at strong coupling [6–9]. Up to several years ago,

estimates of the location of the tricritical point varied from Ut = 1.5t to Ut = 5t (with

Vt ≈ Ut/2). More recently, this picture has been further modified by the suggestion

that a narrow region exhibiting “bond ordered wave” (BOW) correlations separates

the SDW and CDW regions at weak coupling [10–16].

The competition of CDW and SDW order in the one-dimensional EHH is further

modified if the electrons couple to lattice degrees of freedom. In the case where these

are static, most investigations have addressed the case when there is only on-site

repulsion U , that is, V = 0. In this “ionic Hubbard model” the frozen distortions

have an alternating pattern down the chain [17], and an additional issue is the possi-

bility that the band insulator at U = 0 and half-filling is first driven metallic before

becoming a SDW Mott insulator [18, 19]. If the coupling of the electrons to the

lattice is in the form of dynamically varying phonon degrees of freedom, one has the

Hubbard-Holstein or Su-Schrieffer-Heeger Hamiltonian.

The interplay between band-insulating behavior and electron-electron interaction
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effects such as those studied in this chapter has recently been explored in a number

of contexts. Dynamical mean field theory studies of binary alloy band insulators

described by a bimodal distribution of randomly located one-body potentials have

observed several novel effects, including Mott insulating behavior away from half-

filling [20, 21] and band-insulator to metal transitions driven by increasing on-site

repulsion [22]. Analogous studies of interacting bosons in “superlattice” potentials

in which the site energies are modulated have also been used [23–27] to describe

experiments on ultracold optically trapped (bosonic) atoms [28–31].

There has been relatively little work, especially using quantum Monte Carlo

(QMC) simulations, which addresses how such lattice coupling affects the SDW-CDW

phase boundary in the EHH in which both U and V are nonzero. In this chapter, we

apply the world-line QMC (WLQMC) method to the one-dimensional EHH with an

additional, static one-body potential, and with dynamically fluctuating (“Holstein”)

phonons. We quantitatively determine the amount of lattice coupling required to sta-

bilize a charge ordered phase when the system begins at values of the electron-electron

interactions in the spin density wave regime. An interesting feature of our results is

that the quantum fluctuations induced by the hopping t have the opposite effect on

the strong coupling (t = 0) phase boundary in the two cases. We also present detailed

results for the evolution of the different components of the energy through the phase

transition region.

The remainder of this chapter is organized as follows. An explicit description of

our Hamiltonian and a brief review of our numerical approach are presented in Sec.

3.2. Results for coupling to static and dynamic lattice deformations are given in Secs.

3.3.1 and 3.3.2, respectively.
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3.2 Model and Computational Methods

The extended Hubbard Hamiltonian is

Ĥel = K̂ + P̂ ,

K̂ = −t
∑

iσ

(c†i+1,σci,σ + c†i,σci+1,σ) ,

P̂ = U
∑

i

ni,↑ni,↓ + V
∑

i

nini+1 .

(3.1)

Here c†i,σ, ci,σ, and ni,σ are the creation, destruction, and number operators, respec-

tively, for electrons of spin σ at site i of a one-dimensional lattice, and ni =
∑

σ ni,σ.

The hopping t determines the kinetic energy (non-interacting band dispersion εk =

−2t cos k), and is set to t = 1. U and V , taken to be positive, are the on-site and

intersite repulsions. We will be exclusively interested in the properties of the model

at half-filling where the number of fermions Nf =
∑

i ni = N , is equal to the number

of lattice sites.

We will consider additional couplings to an on-site lattice degree of freedom,

Ĥ = Ĥel + Ĥlattice ,

ĤIHM = ∆
∑

i

(−1)ini ,

ĤHolstein = λ
∑

i

xini +
∑

i

(
1

2
p2

i +
1

2
ω2

0x
2
i

)
,

(3.2)

where Ĥlattice can take one of two possible forms: either static (ionic Hubbard model

“IHM”) or dynamic (“Holstein”). The half-filled one-dimensional IHM was proposed

as a model ferroelectric by Nagaosoa [32] and Egami [33] as one expects a transition

from an ionic band insulator to a Mott insulator as U is increased. The Hubbard-

Holstein Hamiltonian is of particular interest in understanding how strong electronic

correlations are influenced by electron-phonon interactions. Analytic and numeric
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Figure 3.1: Phase diagram for the Extended Hubbard model in the strong-coupling
limit t = 0 at half-filling. The boundary between the spin density wave and charge
density wave phases lies on the line U = 2V .

studies on such Hamiltonians are quite numerous [18, 19, 32–44].

It is useful to review the strong coupling (t = 0) phase diagram (shown in Fig. 3.1),

since when the hopping is nonzero the topology of the phase diagram is rather similar

qualitatively and even quantitatively. In the absence of an interaction with the lattice,

the SDW phase, which consists of a collection of singly occupied sites, has energy

Et=0
SDW = NV , while the CDW phase has alternating empty and doubly occupied

sites, and energy Et=0
CDW = NU/2. The boundary is given by U = 2V .

A static lattice distortion ∆ breaks the twofold symmetry of the CDW state and

lowers the energy by N∆ on the preferred sublattice. The resulting boundary is

shifted to V = U/2 − ∆.

In the case of coupling to a dynamical phonon, we can construct the t = 0 phase

diagram by completing the square of the electron-phonon term in the Hamiltonian.

The result is an oscillator with the same frequency ω0 and an equilibrium position
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shifted by λ/ω2
0. An attractive on-site interaction −(λ2/2ω2

0)ni,↑ni,↓ is also generated.

Other terms can be absorbed into a shifted chemical potential and energy. As with the

static term, the weakening of the on-site U shifts the strong coupling phase diagram

in favor of CDW order. If −(λ2/2ω2
0) is sufficiently large, pairing correlations can

come to dominate, especially in the doped case. We will not work in that parameter

regime here.

In order to understand how the quantum fluctuations, which develop as t increases,

modify these simple considerations, we employ the world-line quantum Monte Carlo

(WLQMC) method [45]. Consider first the approach for Ĥ = Ĥel + ĤIHM. We begin

by discretizing the inverse temperature β into intervals ǫ = β/L in the partition

function, and approximating the incremental (imaginary) time evolution operator by

the product of the exponentials of the kinetic energy and potential energy terms

separately.

Z = Tr
[
e−βĤ

]
≈ Tr

[
e−ǫK̂e−ǫ(P̂+ĤIHM)

]L
. (3.3)

This Suzuki-Trotter approximation [46, 47] introduces errors in measurements [48, 49]

which are of order the commutator [K̂, P̂ ], that is, t U ǫ2, t ∆ ǫ2, and t V ǫ2. Except

where otherwise noted, we will choose ǫ = 0.25, which is sufficiently small that the sys-

tematic Trotter errors in the location of the phase boundary are comparable to those

arising from statistical fluctuations in the Monte Carlo sampling and uncertainties

associated with finite size scaling.

The construction of a path integral for Z is completed by introducing complete

sets of fermion occupation number states I =
∑ |ni,σ〉τ 〈ni,σ|τ both for the trace and

at all imaginary times, i.e., between each product, e−ǫK̂e−ǫ(P̂+ĤIHM). The exponentials

of the terms in P̂ + ĤIHM immediately act on the eigenstates, replacing all operators

by numbers. Thus the weight of a particular occupation number configuration gets a
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contribution WP WIHM,

WP({ni,τ,σ}) = exp
(
ǫ
∑

i,τ

[
Uni,τ,↑ni,τ,↓ + V (ni,τ,↑ + ni,τ,↓)(ni+1,τ,↑ + ni+1,τ,↓

])
, (3.4)

WIHM({ni,τ,σ}) = exp
(
ǫ
∑

i,τ

∆(−1)i(ni,τ,↑ + ni,τ,↓)
)

, (3.5)

where {ni,τ,σ} denotes the space- and imaginary-time-dependent occupation numbers

in the collection of intermediate states.

To accomplish the same replacement of operators by numbers for the kinetic

energy exponentials, K̂ is further subdivided (the “checkerboard decomposition”)

[45, 50] into

K̂ = K̂odd + K̂even ,

K̂odd = −t
∑

i odd

∑

σ

(c†i+1,σci,σ + c†i,σci+1,σ) ,

K̂even = −t
∑

i even

∑

σ

(c†i+1,σci,σ + c†i,σci+1,σ) .

(3.6)

The expectation value of K̂odd and K̂even between the occupation number states

|ni,σ〉τ and 〈ni,σ|τ+1 then reduces to a product of independent two-site problems which

can be solved analytically. Since particle number is conserved in each hopping process,

the number of electrons on each pair of sites in the two states to the left and to the

right of the exponential is identical. Thus the world lines generated by connecting all

occupied sites (ni,τ,σ = 1) are continuous. The four nonzero matrix elements are

〈
00
∣∣∣ eǫt(c†

1
c
2
+c†

2
c
1
)
∣∣∣ 00

〉
= 1 , (3.7a)

〈
11
∣∣∣ eǫt(c†

1
c
2
+c†

2
c
1
)
∣∣∣ 11

〉
= 1 , (3.7b)

〈
10
∣∣∣ eǫt(c†

1
c
2
+c†

2
c
1
)
∣∣∣ 10

〉
= cosh(tǫ) , (3.7c)

〈
10
∣∣∣ eǫt(c†

1
c
2
+c†

2
c
1
)
∣∣∣ 01

〉
= sinh(tǫ) . (3.7d)
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The product of all these factors over the space-time lattice constitutes a second con-

tribution WK to the weight associated with the configuration. Thus, the total weight

is Wtot = WPWIHMWK. Because all of the matrix elements are positive in one dimen-

sion, the WLQMC algorithm does not exhibit a sign problem.

In the case Ĥ = Ĥel + ĤHolstein, the trace and intermediate states include not only

fermion occupation labels, but also a complete set of phonon position eigenstates. As

with Ĥel, the exponential of the phonon kinetic and potential energies is discretized

and split apart. The result is that in addition to the electronic contributions WP WK

there is a final phonon piece,

Wph({xi,τ}) = exp

[
1

2
ǫ
∑

i,τ

ω2
0x

2
i,τ +

(
xi,τ+1 − xi,τ

ǫ

)2
]

. (3.8)

Let us then summarize the basic features of the simulation. The degrees of freedom

being summed over are two space-time arrays of occupation numbers ni,τ,↑ and ni,τ,↓,

and, in the Holstein case, a space-time array of phonon coordinates xi,τ , with i =

1, 2, . . . , N and τ = 1, 2, . . . , 2M . (The factor of 2 comes from the checkerboard

decomposition.) The total weight of the configuration is Wtot = WPWKWPh. The

elemental Monte Carlo moves consist of local distortions of the continuous world

lines, together with updates of the phonon degrees of freedom. Moves are accepted

or rejected according to the Metropolis algorithm: a random number 0 < r < 1 is

generated and the move is accepted if r < W ′
tot/Wtot.

The WLQMC algorithm can suffer from long autocorrelation times. Other ap-

proaches such as the stochastic series expansion method [51–53] and loop algorithms

[54] can be used to speed up the evolution in phase space. Here we confine ourselves

only to introducing global moves [55] in the phonon degrees of freedom to address

even more serious large autocorrelation times there.

We conclude with a discussion of the observables we will measure. The various
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components of the energy exhibit sharp features as the phase boundaries are crossed.

Real space spin, charge (relative to the mean), and bond operators are defined by

m(l, τ) = nl,τ,↑ − nl,τ,↓ , (3.9a)

n(l, τ) = nl,τ,↑ + nl,τ,↓ − 1 , (3.9b)

k(l, τ) =
∑

σ

(c†l+1,σ(τ)cl,σ(τ) + c†l,σ(τ)cl+1,σ(τ)) . (3.9c)

The associated correlation functions are

cspin(l, τ) = 〈m(l, τ)m(0, 0)〉 , (3.10a)

ccharge(l, τ) = 〈n(l, τ)n(0, 0)〉 , (3.10b)

cbond(l, τ) = 〈k(l, τ)k(0, 0)〉 , (3.10c)

where (0, 0) is some reference site in our system. The local moment is defined as

〈m2
z〉 = cspin(0, 0).

We will also look at the Fourier transforms of these quantities. The equal time

spin structure factor is

Sspin(q) =
1

N

∑

l

eiqlcspin(l, 0) , (3.11)

with analogous definitions for Scharge and Sbond. The corresponding zero-frequency

susceptibility is

χspin(q) =
1

N

∑

τ

∑

l

eiqlcspin(l, τ) , (3.12)

again with analogous definitions for χcharge and χbond.

At half-filling the largest responses in the Hubbard model are at wave vector q = π.

In a disordered phase, c(l, 0) decays exponentially to zero with the site separation l,
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and the structure factor is independent of lattice size N . If true long range order

develops, then the structure factor grows linearly with lattice size, with the factor

eiπl providing the necessary phases so that the oscillating c(l) add constructively.

The susceptibility similarly examines the asymptotics in imaginary time, diverging

as β → ∞ when c(l, τ) remains nonzero for large τ .

3.3 Results

3.3.1 Extended Ionic Hubbard Hamiltonian

In the extended Hubbard Hamiltonian with U = 6t and V = 1.5t, we are well

within the SDW phase since U > 2V . In Fig. 3.2 we see that as ∆ is increased, the

SDW susceptibility decreases and the CDW susceptibility grows. Indeed, χCDW rises

dramatically in the vicinity of ∆ = U/2 − V , as suggested by the strong coupling

analysis. The transition becomes increasingly sharp as the lattice size is increased.

Because the CDW correlations break a discrete symmetry, true long range order is

possible at T = 0. With our normalization conventions we expect the CDW structure

factor and susceptibility to grow linearly with lattice size after the onset of long range

order. This is borne out in the central panel of Fig. 3.2. The inset in this panel shows

a scaled version of the raw data for χCDW. A crossing of the curves for different lattice

sizes N allows us to determine the location of the critical point.

The SDW correlations that are dominant at small ∆ break a continuous symmetry,

and hence in one dimension decay with a power law at T = 0, that is, cspin(l, 0) ∝ 1/l.

This behavior accounts for the relatively less rapid growth of the SDW susceptibility

with lattice size.

It is important to make another distinction between the CDW and SDW phases,

the phases that arise as broken symmetries from the interaction terms V and U ,

and the staggered density which is caused by the one-body term ∆. This staggered
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Figure 3.2: Spin density wave (top), charge density wave (middle), and bond ordered
wave (bottom) susceptibilities versus staggered site energy ∆ for U = 6t, V = 1.5t,
βt = 8, and N = 8, 16, 32. The SDW-CDW transition occurs at close to the t = 0
value, ∆ = U/2 − V . BOW correlations are enhanced in the intermediate region.
In the inset to the central panel, the scaled χCDW is shown for γ = 1. The scaled
susceptibilities cross at ∆c/t = 1.278, indicated by the vertical dotted line.

i − 2 i − 1 i i + 1 i + 2 i + 3

Figure 3.3: Illustration of a BOW phase. The thick lines indicate a high kinetic
energy while the thin lines indicate a small kinetic energy.
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potential ∆ breaks translational invariance so that there is a small degree of CDW

order even in the SDW phase. By contrast, in a competition solely between U and V

at ∆ = 0, no CDW order would exist in the SDW phase.

The bottom panel of Fig. 3.2 shows the BOW correlations. In a BOW phase

the kinetic energy on the links oscillates between two values as one traverses the

chain (see Fig. 3.3). SDW correlations are immediately plausible after observing

that U leads to singly occupied sites (moment formation) and that neighboring spins

that are antiparallel have a second-order lowering of their energy (∆E(2) ∝ −t2/U)

relative to neighboring spins that are parallel. Analogous reasoning applies to CDW

correlations. A picture of the less familiar BOW order is the following: consider a

CDW pattern of doubly occupied and empty sites. A fermion hopping from doubly

occupied site i onto neighboring empty site i+1 will prevent, through the interaction

U , the hopping of a second electron from doubly occupied site i+2 onto i+1. Instead,

an electron on site i + 2 would prefer to hop to i + 3. Thus the bonds (i, i + 1) and

(i+2, i+3) have high kinetic energy, while the intermediate bond (i+1, i+2) has low

kinetic energy. This way of understanding the origin of BO invokes both CDW and

SDW correlations, making it plausible that the BOW might form on the boundary

between the two.

Since the BOW phase also breaks a discrete translational symmetry, the associated

ground state order should be long ranged. As mentioned in the Introduction, in the

extended Hubbard model (∆ = 0) the original picture of the phase diagram was

one with only SDW and CDW regions, with a weak coupling second-order transition

changing at a tricritical point to a strong coupling first-order transition [6–9]. Recent

QMC simulations with the stochastic series expansion (SSE) have suggested instead

that, at weak coupling, as V is increased at fixed U there are two separate transitions:

a SDW-BOW transition of the Kosterlitz-Thouless type, followed by a second-order

BOW-CDW transition. These transitions merge at a multicritical point into a single,
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direct, first order SDW-CDW transition line at strong coupling [12]. The multicritical

point was found to be at (Um, Vm) = (4.7 ± 0.1, 2.51 ± 0.04).

Aspects of this conclusion had been challenged by density matrix renormalization

group calculations [56–58]. In particular, the suggestion is that the BOW phase exists

only precisely on the SDW-CDW transition line, as opposed to being present in an

extended region. Moreover, rather than starting at U = V = 0 and reaching out to the

multi-critical point, the BOW line was concluded to begin at finite, nonzero coupling

and also extend somewhat beyond the numerical value for the multi-critical point

obtained using the SSE. Further SSE calculations [14] and functional RG treatments

[16] appear to confirm earlier SSE work.

We do not propose here to add to this discussion, since our main focus is on

the shift in the SDW-CDW phase boundary. Indeed, the value of U in Fig. 3.2 is

large enough that we would likely be above the BOW region of the phase diagram.

Nevertheless, the bottom panel of Fig. 3.2 does indicate a pronounced maximum in

χBOW near the SDW-CDW transition, hinting that such order may be present at

weaker coupling. If long range BO were to exist, we would expect to see χBOW grow

linearly with N , as does χCDW. This is clearly not the case for the parameters and

lattice sizes of Fig. 3.2.

In Fig. 3.4 we fix U = 6t and the lattice size at N = 32, and sweep ∆ for different

choices of V . As expected, the size of ∆ required to destroy the SDW phase decreases

as the intersite interaction V , which cooperates with ∆, rises. As with the data of

Fig. 3.2, the fall of χSDW coincides closely with the rise of χCDW. In each case the

transition is marked also by a maximum in χBOW. The sharpness of the peak in χBOW

diminishes as V grows, which is consistent with the SSE [57] and density matrix (DM)

RG [56] calculations on the extended Hubbard model which (although they disagree

in certain respects) both conclude that BO is not present at strong coupling. We note

that a Mott-insulator–BO transition has also been suggested by Zhang et al. in the
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Figure 3.4: Spin density wave (top), charge density wave (middle), and bond or-
dered wave (bottom) susceptibilities versus staggered site energy ∆ for U = 6t,
V = 0.0t, (0.5t), 3.0t, and N = 32.

V = 0 limit with ∆ = 2.0 and Uc = 5.95 ± 0.01 [42].

The behavior of the total energy, Fig. 3.5(a), is featureless through the sweep

upward in ∆. However, abrupt evolution of the individual components of the energy,

Figs. 3.5(b)-(d), accompanies the transitions in the susceptibilities. The energy as-

sociated with V decreases sharply upon exiting the SDW phase where adjacent sites

are occupied, while the energy associated with U jumps upward with the develop-

ment of double occupancy. The kinetic energy is relatively benign, but, like χBOW,

reaches maxima along the SDW-CDW transition line. Evidently, the near balance be-
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Figure 3.6: Phase diagram in the intersite V and staggered site energy ∆ plane, with
U = 6t and βt = 8. Line with symbols is the result of the WLQMC simulations in
this chapter. We also show the exact result (line without symbols) for t = 0. As
expected, the strong coupling limit works well at large V , but there are significant
deviations as V becomes smaller.

tween the insulating tendencies of U and V allows greater fluctuation in the electron

positions.

The values of ∆ at which the different susceptibilities change abruptly, and at

which features in the energy are also evident, enable us to draw the phase diagram in

the V -∆ plane for fixed U = 6t shown in Fig. 3.6. At ∆ = 0 our QMC results match

quite nicely the DMRG results of Jeckelmann [56], who finds Vc = 3.155 ± 0.005 for

U = 6t. This ∆ = 0 transition point is not too far shifted from the strong coupling

value Vc = U/2 = 3t when U = 6t.

As the staggered potential ∆ becomes greater, our QMC phase boundary bends

more away from the t = 0 line Vc = U/2 − ∆. The SDW phase appears to terminate

at ∆ = 2.46±0.05 in the absence of intersite repulsion V . While labeled as CDW, the

large ∆ phase in the V = 0 limit is perhaps more properly termed a band insulator,

where the alternating charge density is a consequence of the staggered one-body
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Figure 3.7: Spin density wave (top), charge density wave (middle), and bond ordered
wave (bottom) susceptibilities versus electron-phonon coupling λ for U = 6t, V =
1.5t, ω0 = 2t, βt = 8, and N = 8, 16, 32.

potential as opposed to many-body effects.

3.3.2 Extended Hubbard Holstein Hamiltonian

Having completed our discussion of the case of the interplay of a static alternating

external potential with the correlation terms U, V in the extended Hubbard Hamil-

tonian, we now give analogous results for the case when we couple to dynamical

(Holstein) lattice distortions. Figure 3.7 is a companion to Fig. 3.2, showing the evo-

lution of the spin, charge, and bond susceptibilities with electron-phonon coupling λ
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(rather than staggered potential ∆) for different system sizes N . As discussed earlier,

λ has a similar qualitative effect to ∆, since it weakens the on-site repulsion U and

hence drives CDW formation. There are significant quantitative differences between

the two situations. The SDW-CDW transition as a function of electron-phonon cou-

pling λ appears to be much more abrupt. Recall that ∆ breaks the lattice symmetry

explicitly, selecting out a single preferred sublattice. It induces CDW order even

within the SDW phase and as a consequence the change through the transition is less

dramatic. The Holstein interaction, in contrast, spontaneously breaks the transla-

tional symmetry when it drives CDW order. We note further that BOW order is less

sharply peaked at the SDW-CDW boundary.

Figure 3.8 is a companion to Fig. 3.4, similarly showing the susceptibilities as a

function of electron-phonon coupling constant λ for a collection of values of V at a

single lattice size N = 32 and ω0 = 2t. As V increases, a smaller λ is sufficient to

drive CDW formation. There appears to be some variation of the sharpness of the

evolution of the susceptibilities near λc as V is varied, with the most abrupt behavior

occurring for intermediate V . In the extended Hubbard model (λ = 0), the transitions

become monotonically more steep with increasing V . Indeed, as noted earlier, they

change from continuous to discontinuous beyond the tri(multi)-critical point. The

fluctuations of χCDW at large λ in Fig. 3.8 (middle panel) often occur in QMC studies

of electron-phonon Hamiltonians and are associated with long equilibration times

which occur when the electrons and lattice degrees of freedom are strongly coupled.

As with ĤIHM, the components of the energy (Fig. 3.9) lend important supporting

evidence for the locations of the transition points. The behavior of EV and EU is

the same as that observed previously in Fig. 3.5, and is more or less clear: in the

SDW phase most sites are singly occupied and there is a significant contribution

to EV , which then drops abruptly in the CDW phase where doubly occupied and

empty sites alternate. In contrast, EU is small in the SDW phase since sites are
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Figure 3.8: Spin density wave (top), charge density wave (middle), and bond ordered
wave (bottom) susceptibilities versus electron-phonon coupling λ for U = 6t, V =
0.0t, (0.5t), 3.0t, ω0 = 2t, and N = 32.

singly occupied, but then increases sharply in the CDW phase. What is perhaps less

intuitive is the evolution of the phonon contributions to the energy. As λ grows, the

t = 0 analysis suggests a smooth quadratic increase, Epot
phonon = λ2/2ω2

0. Instead the

phonon potential energy remains relatively flat throughout the SDW region, and then

jumps up as the CDW is entered. The phonon kinetic energy is especially interesting,

showing a well-defined minimum in the transition region. The origin of this effect

is not clear. Ekin
phonon is measured by the fluctuations of the phonon coordinates in

imaginary time. Naively, one might expect kinetic lattice fluctuations to be largest
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Figure 3.10: This figure shows the phase diagram for intersite V and electron-phonon
coupling λ with U = 6t, ω0 = 2t, and βt = 8. Line with symbols is the result of the
WLQMC simulations in this chapter. The functional form of the fit is V = aλ2 + b.
We show the exact result (line without symbols) for the t = 0 phase.

in the SDW-CDW transition region where the system is undecided between which

type of order to assume. In the case of the electron kinetic energy we see precisely

this effect in Fig. 3.9(a). The opposite appears to be the case for the phonon kinetic

energy.

Finally, Fig. 3.10 shows the phase diagram in the V -λ plane at fixed U = 6t. It

shares the same general features as Fig. 3.6 with a SDW phase near the origin that

is destroyed when either the intersite repulsion V or the electron phonon coupling

λ increases sufficiently. Figure 3.10 describes how large a value of electron-phonon

coupling λ is required to convert the SDW phase, favored by U , to the CDW phase,

favored by V , and is representative of how λ affects the extended Hubbard model

phase diagram at all intermediate to large interaction strengths. It is important to

note that, unlike Fig. 3.6, the QMC phase boundary does not bend away from the

t = 0 line Vc = U/2 − λ2/4ω0. Instead, the boundary is uniformly shifted to increase
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the critical intersite repulsion, favoring SDW order. Again, the λ = 0 point on our

phase boundary (Vc = 3.124±0.011) agrees well with Jeckelmann’s DMRG treatment.

(See above discussion of Fig. 3.6.)

For finite λ we can compare against the phase diagram of Sil and Bhattacharyya

who study the same extended Hubbard model coupled to Holstein phonons [44]. They

draw the phase boundary in the U -V plane for different electron-phonon couplings.

Translating to the units used in this chapter, for U = 6t and V = 2t, their data

suggest that the CDW phase is destroyed at λc ≈ 2.8. Our Fig. 3.10 gives λc ≈ 3.0

at V = 2t for the same parameters. Likewise, Sil and Bhattacharyya find that for

λ = 5.6 there is no SDW phase at U = 3t. This is again nicely consistent with our

data, which suggest that when λ = 5.04 ± 0.06 there is CDW order.

3.4 Summary

We have presented world-line quantum Monte Carlo simulations of the one-dimensional

extended Hubbard Hamiltonian for which coupling to static staggered (ionic Hub-

bard) or dynamic (Holstein) lattice degrees of freedom is added. The evolution of

the susceptibilities to different types of order and the components of the energy were

examined. For both static and dynamic couplings the region of charge density wave

order in the phase diagram is found to be stabilized, and the phase boundaries are

pinned down. Bond order is shown to be enhanced in the vicinity of the spin density

to charge density transition.

The results obtained in this work also show good agreement with previous studies.

The zero-coupling limit (∆, λ = 0) results conform well with Jeckelmann’s DMRG

results. For dynamic couplings, the results compare favorably with the results of Sil

et al.

A comparison of the QMC phase boundaries with their counterpart in the t = 0
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limit shows a markedly different behavior between the two types of coupling. For

static couplings, the CDW phase is enhanced in the QMC calculation. Conversely,

there is an enhancement of the SDW correlations with Holstein phonons.
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Chapter 4

Quantum Monte Carlo study of

the visibility of one-dimensional

Bose-Fermi mixtures

The work described in this Chapter was done in collaboration with Valery Rousseau

and Richard Scalettar. It has been published in Reference 1.

4.1 Introduction

It has been widely suggested that the strong correlations responsible for magnetism,

superconductivity, and the metal-insulator transition in the solid state can be studied

via ultracold optically trapped atoms. Indeed, this idea has been successfully realized

in the context of both bosonic and fermionic atoms. In the former case, the transition

between condensed (superfluid) and insulating phases was demonstrated through the

evolution of the interference pattern after the release and expansion of the gas [2].

Initial studies focused on the height [2] and width [3] of the central interference peak,

with later work looking at the visibility V , which measures the difference between the

maxima and minima of the momentum distribution function S(k) [4–6]. Interesting
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“kinks” are observed in V which are associated with the redistribution of the density

as the superfluid shells evolve into insulating regions [7, 8]. For trapped fermions [9–

13], Mott phases could also form [14–16], however, without a signal in S(k). Instead,

the evolution of the kinetic energy has been proposed as a means to pinpoint the

transition [17].

Attention has turned at present to multicomponent systems, which offer a rich

set of phenomena including Bose-Einstein condensation (BEC)-BCS crossover for two

attractive fermionic species and Fulde-Ferrell-Larkin-Ovchinnikov phases in situations

with two imbalanced fermion populations. Two recent experimental papers report the

effect of the addition of fermionic 40K atoms on the visibility of bosonic 87Rb in a

three-dimensional trap [18, 19]. The basic result is a decrease in the bosonic visibility

Vb driven by the fermion admixture. A large number of qualitative explanations has

been put forth for this phenomenon, including the localization of the bosons by the

random fermionic impurities, the segmentation of the bosonic superfluid, the adiabatic

heating of the bosonic cloud when the lattice depth is increased in the presence of the

two species, an enhanced bosonic mass due to the coupling to the fermions, and the

growth of Mott-insulating regions. A fundamental difficulty is that exact quantum

Monte Carlo (QMC) calculations show an increase in Vb [20], in disagreement with

experiment. In this chapter we resolve this issue.

The behavior of Bose-Fermi mixtures has attracted considerable theoretical at-

tention. The Hamiltonian was derived and its parameters linked to experimental

quantities by Albus et al. [21]. The equilibrium phase diagram has been stud-

ied using mean-field theory and Gutzwiller decoupling [21–23], perturbation theory

[22], dynamical mean-field theory (DMFT) [23], exact diagonalization [24], quantum

Monte Carlo methods [20, 25–27], and density matrix renormalization group (DMRG)

[20, 28]. The results of these studies include the observation of Mott-insulating phases

at “double half-filling”, anticorrelated winding of the two species of quantum parti-
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cles, molecule formation, and precise determination of the exponents characterizing

correlation function decay in the different phases. The behavior of the visibility was

addressed by Pollet et al. [20], who find interesting nonmonotonic structures with

fermion density. However, Vb is always increased relative to the pure case [29].

In this chapter we explore the visibility of Bose-Fermi mixtures in one dimension

using QMC simulations with the canonical worm algorithm [30–32]. While previous

QMC studies have reported a growth of Vb, we show that a significant reduction,

such as seen experimentally, is also possible without invoking temperature effects

[20]. The enhancement (reduction) of Vb caused by the disruption (inducement) of

the bosonic Mott-insulator phase by the boson-fermion interactions. Vb also exhibits

kinks reminiscent of those in the pure boson case. In the subsequent sections we

write down the Hamiltonian and observables and briefly discuss the QMC algorithm.

We then present the evolution of Vb with fermion concentration, its interpretation in

terms of the bosonic density profiles, and evidence for the formation of a molecular

superfluid in the trap center.

4.2 Model and Computational Methods

The one-dimensional (1D) Bose-Fermi Hubbard Hamiltonian is [21]

H = − tb
∑

j

(b̂†j b̂j+1 + h.c.) − tf
∑

j

(ĉ†j ĉj+1 + h.c.)

+ W
∑

i

x2
i (n̂

(i)
b + n̂

(i)
f ) +

Ubb

2

∑

i

n̂
(i)
b (n̂

(i)
b − 1) + Ubf

∑

i

n̂
(i)
b n̂

(i)
f ,

(4.1)

where b̂j (b̂†j) and ĉj (ĉ†j) are the annihilation (creation) operators of the bosons and

(spin-polarized) fermions at lattice site j, respectively, and n̂
(i)
b = b̂†i b̂i , n̂

(i)
f = ĉ†i ĉi

are the corresponding number operators. The first two terms of Eq. (4.1) describe

bosonic and fermionic nearest-neighbor hopping. The curvature of the trap is W , and
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the coordinate of the jth site is given by xj = ja, where a is the lattice constant. Ubb

and Ubf are the on-site boson-boson and boson-fermion interactions. Here nearest-

neighbor interactions are not considered as they are orders of magnitude smaller in

strength. In this work we consider 80-site chains with the nearest-neighbor hopping

set to be identical for fermions and bosons (tb = tf = t = 1) and trapping potential

W = 0.01t.

In the canonical worm algorithm [30–32] employed in our calculation, operator

expectation values are sampled through the introduction of open-ended world lines

that extend over equal imaginary time into a path integral expression for the partition

function. The properties we study include the kinetic, potential, and trap energies,

the density profiles, and the visibility,

V =
Smax − Smin

Smax + Smin

, (4.2)

where Smax and Smin are the maximum and minimum values of momentum distribu-

tion function,

S(k) =
1

L

∑

j, l

eik(xj−xl)〈b̂†j b̂l 〉. (4.3)

4.3 Results

The enhanced visibilities with fermion concentration reported previously [20] are in

contrast with the trend to reduced Vb measured experimentally [18, 19]. In Fig. 4.1,

we see the origin of this effect in a system with 40 bosons: the visibility enhancement

at large Ubb is caused by the destruction of the Mott phase at the trap center by the

fermions. It is natural to conjecture that if n
(i)
b < 1 at the trap center the additional

attraction due to the fermions could induce Mott-insulating behavior and reduce V .

In Fig. 4.2(a), we show that this expectation is correct. Here, we fix Ubb = 12t and
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Figure 4.1: Comparison of the density profiles at Ubb = 8.3t and Ubf = −5.0t for
Nf = 0, 3, 5 fermions on an 80-site chain with 40 bosons. The Mott insulator at the
trap center for the pure bosonic case is destroyed by the addition of fermions. This
drives the increase in the visibility.

increase Nb for both the pure case and for a system with fermion number fixed at

Nf = 9 and boson-fermion interaction at Ubf = −5t. What we observe is that in a

window where the boson central density is approaching n
(i)
b = 1 the bosonic visibility

is decreased by the presence of the fermions. The cause is clear: if the bosons are

poised just below Mott-insulating behavior, then the fermions can induce it. This is

supported by a comparison of the density profiles in Fig. 4.2(b).

The primary mechanism through which fermions affect Vb is the local adjustment

of the site energy and hence of the local bosonic density. This is an effect which occurs

regardless of the dimensionality. Hence, we expect aspects of our conclusions to be

relevant to experiments in higher dimension [20]. While we have shown a decreased

visibility similar to that seen experimentally, the enhancement of visibility may be

the more generic behavior in one dimension. In the one-dimensional “state diagram”

of the purely bosonic case [33] the area of parameter space occupied by the phase

with a Mott plateau of n
(i)
b = 2 is very narrow. Thus the prospect for the fermions

to drive the system into this phase is limited.

In the case of a pure bosonic system [8], the change in visibility with the boson-

boson interaction strength Ubb is not smooth, but is accompanied by “kinks.” These
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Figure 4.2: (a) Bosonic visibility Vb as a function of the number of bosons for Nf = 0
and 9 fermions with fixed Ubb = 12.0t and Ubf = −5.0t. (b) Bosonic density profiles
for Nb = 26 bosons and Nf = 0, 9 fermions. The addition of the fermions induces
Mott-insulating behavior in the bosons. The key consequence is a decrease in Vb for
Nf = 9 relative to Nf = 0, similar to that seen in the experiments.

kinks are associated with a freezing of the density profile when the transfer of the

bosonic density from the trap center is interrupted by the formation of Mott insulator

shoulders. In Fig. 4.3, the behavior of the visibilities and density profiles with Ubb in

the presence of fermions is shown. Vb decreases with Ubb as the interaction reduces

the quasicondensate fraction Sb
max. Conversely, the interactions enhance Sf

max and Vf

increases with Ubb. There are, however, additional kinks in the case when fermions

are present whose origin we shall discuss below. Figure 4.4 helps to quantify this

freezing by showing the evolution of the trap, interaction, and kinetic energies with

Ubb. These energies exhibit a sequence of plateaus and rapid drops corresponding to

the kink locations in Fig. 4.3.

Figure 4.5(a) compares the visibility evolution for the pure bosonic case (Nf = 0)

with two different fermion numbers Nf = 3 and 5. For Nf = 3, the kink at lowest
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Figure 4.3: (a) Bosonic and fermionic visibilities and bosonic Smax as functions of
Ubb/t for a system with 40 bosons, 3 fermions, and Ubf = −5.0t. The “plateau”
regions where the rate of reduction of V is reduced are due to freezing of the density
profiles (see text). The fast decrease after Ubb/t ≈ 9.3 is due to the formation of a
Mott-insulating region in the central core, which is fully formed and indicated by the
arrow at Ubb/t = 9.6. (b) Boson density profiles at five different values of Ubb/t.

Ubb = 6.1t is associated with the initial emergence of the Mott shoulders. This kink

coincides with one in the pure bosonic case Nf = 0 because the shoulders form

outside the regions occupied by the fermions at the trap center. For Nf = 5, the

width of the fermion density is comparable to the size of the bosonic superfluid in

the center of the trap, and the kink at Ubb = 6.0t signifies a freezing of the bosonic

density but not the formation of the Mott shoulders. Instead, the kink visible at

Ubb ≈ 6.8t is responsible for the formation of the Mott shoulders. This shift to higher

Ubb is expected since the attractive Ubf delays the transfer of bosonic density out of

the center. Figures 4.5(b) and 4.5(c) compare the components of the energy. Each

plateau signifies that the bosonic and fermionic densities are frozen over the range in

Ubb. The sizes of the plateaus vary and the reason for this may be addressed in future
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Figure 4.4: (a) Trapping (Etrap) and interaction (Eint) energies as functions of Ubb/t

for the system of Fig. 4.3. (b) Bosonic (Eb
kin) and fermionic (Ef

kin) kinetic energies.

work. Past experiments [18, 19] did not have the resolution to exhibit the kinks we

have seen in these simulations; however, they might be seen with improved accuracy.

We also note in Fig. 4.5 that the number of plateaus is directly related to the

number of fermions in the Bose-Fermi mixture and that each plateau is roughly the

same size, indicating that bound pairs of bosons and fermions are being destroyed

as Ubb is increased. This conclusion is substantiated in Fig. 4.6, where we compare

the bosonic density with the fermionic density. The fermionic density is offset by a

constant to emphasize the near perfect overlap in the densities near the center of the

trap, indicating that the trap center is populated by a molecular superfluid (MSF).

Indeed, at the weakest coupling, Fig. 4.6(a), the fermion density precisely equals the

excess boson density above the commensurate Mott value n
(i)
b = 1. When Ubb is

increased, moving from one plateau to another in Fig. 4.5, the MSF region in the

center of the trap shrinks. For the kink at highest Ubb (≈ 9.8t for Nf = 5), the
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Figure 4.5: Comparison of (a) bosonic visibility Vb, (b) the trapping energy, and
(c) the interaction energy for Nf = 0, 3, and 5 fermions on an 80-site chain with 40
bosons and fixed Ubf = −5.0t. The arrows in panels (a), (c), and (b), respectively,
denote the locations of the kinks (the onset of rapid change in energy and visibility)
for Nf = 0, 3, and 5 fermions.

MSF region is destroyed, the bosonic density is a Mott insulator, and the fermionic

visibility Vf → 1.

4.4 Summary

In summary, we have shown that the visibility of Bose-Fermi mixtures can be en-

hanced or reduced by the boson-fermion interactions depending on whether the bosonic

density in the pure case is above or below commensuration. This result resolves a

fundamental disagreement between experiment and QMC simulations. There are nu-
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Figure 4.6: Bosonic and fermionic density profiles for (a) Ubb = 6.3t, (b) Ubb = 7.2t,
(c) Ubb = 8.6t, and (d) Ubb = 9.5t with 5 fermions, 40 bosons, and fixed Ubf = −5.0t.
The fermionic density is offset and the dashed gray line indicates zero density. The
densities match in the center of the trap, with the region of coincidence decreasing
as Ubb increases.

merous kinks in the visibility and the different energies that result from freezing of the

density profiles. While our bosonic component is sufficiently large so that our results

are converged with respect to lattice size, the number of fermions is much smaller. It

is possible that the kinks will merge together and be less easy to observe in a larger

system. The density profiles near the kinks show direct evidence for a molecular

superfluid in the center of the trap and that a larger Ubb is required to destroy the

bound pairs with larger Nf and subsequently induce Mott-insulating behavior.
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Chapter 5

Quantum Monte Carlo study of

the two-dimensional fermion

Hubbard model

The work described in this Chapter was done in collaboration with Simone Chiesa,

Che-Rung Lee, Zhaojun Bai, Mark Jarrell, and Richard Scalettar. It has been pub-

lished in Reference 1.

5.1 Introduction

Originally introduced to explain magnetism and metal-insulator transitions in solids

with strong electronic correlations and narrow energy bands [2–6], the underlying

physics of the fermion Hubbard Hamiltonian [7–10] remains a topic of considerable

interest. In two dimensions, when the lattice is doped away from half-filling, do

the fermions condense into a superconducting state? If so, what is the symmetry of

the pairing order parameter [11–15]? Do charge inhomogeneities (stripes and checker-

boards) emerge, and what is their interplay with magnetic and superconducting order

[16–19]?
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In contrast to this uncertainty concerning the properties of the doped lattice,

the qualitative behavior at half-filling (one fermion per site) is much more well un-

derstood. The interaction strength U causes both the development of long-range

antiferromagnetic order (LRAFO) and insulating behavior. Even so, there are still

some remaining open fundamental questions, for example, in the precise way in which

the model evolves from the weak-coupling to strong-coupling limits, especially in two

dimensions, as we explain below.

At weak-coupling, one pictures the insulating behavior to arise from a Fermi-

surface instability which drives LRAFO and a gap in the quasiparticle density of

states. On the other hand, at strong coupling the insulating behavior is caused by

Mott physics and the suppression of electron mobility to avoid double occupancy.

These points of view are clearly linked, however, since for large U/t the Hubbard

Hamiltonian has well-defined local moments and maps onto the antiferromagnetic

Heisenberg model with exchange constant J = 4t2/U [20].

Developing an analytic theory which bridges these viewpoints quantitatively is

problematic. Hartree-Fock (HF) theory provides one simple point of view, but pre-

dicts LRAFO at finite temperatures in two dimensions, in violation of the Mermin-

Wagner theorem. In fact, even in higher dimension when the Néel tempertaure TN

can be nonzero, HF theory predicts TN ∝ U instead of the correct TN ∝ J = 4t2/U .

Sophisticated approaches such as the self-consistent renormalized theory [21, 22], the

fluctuation-exchange approximation [23], and two-particle self-consistent theory [24]

obey the Mermin-Wagner theorem and provide a good description of the Hubbard

Hamiltonian at weak-coupling, but fail for large U/t. A recent approach [25] based on

the mapping to the nonlinear sigma model [26] has made some progress in connecting

the two regimes.

The need to pin down the behavior of the two-dimensional (2D) half-filled Hub-

bard model more quantititively, in a way which links the weak-coupling and strong-
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coupling limits, is particularly germane at present with the achievement of cooling

and quantum degeneracy in ultracold gases of fermionic atoms [27–32]. Such systems

offer the prospect of acting as an “optical lattice emulator” (OLE) of the fermion

Hubbard model, allowing a precise comparison of experimental and theoretical phase

diagrams which is difficult in the solid state, where the (single band) Hubbard Hamil-

tonian provides only a rather approximate depiction of the full complexity of the

atomic orbitals. Obviously, the achievement of this goal is one which requires ac-

curate computations. A particular issue in the field of OLE concerns whether the

temperature dependence of the double occupancy rate changes sign during the course

of the evolution from weak to strong coupling [33].

It is the intent of this chapter to present considerably improved results for the

effective bandwidth, momentum distribution, and magnetic correlations of the square

lattice fermion Hubbard Hamiltonian. We will employ the determinant quantum

Monte Carlo (DQMC) method, which provides an approximation-free solution of the

model, on lattices large enough to use finite-size scaling to, for example, reliably

extract the antiferromagnetic order parameter as a function of interaction strength.

There is a considerable existing body of QMC studies of the two-dimensional half-

filled Hubbard model, both on finite lattices and in infinite dimension. A partial list

includes Refs. 14, 19, and 34–41.

5.2 Model and Computational Methods

The fermion Hubbard Hamiltonian,

H = − t
∑

〈i j〉σ

(
c†jσciσ + c†iσcjσ

)
+ U

∑

i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑

iσ

niσ , (5.1)
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Figure 5.1: [(a) and (b)] The momentum distribution, Eq. (5.2), is shown for interac-
tion strengths U ranging from U = 2t (one quarter the bandwidth) to U = W = 8t. A
sharp Fermi surface is seen at weak-coupling as the momentum cuts across the Fermi
surface at k = (π/2, π/2). Larger U broadens n(k) considerably. The occupation
becomes substantial outside the nominal Fermi surface. Panel (a) shows the full BZ,
while panel (b) provides higher resolution for the portion of the cut perpendicular
to the Fermi surface at (π/2, π/2). (c) At U = 2t and βt = 32, n(k) has only a
weak lattice size dependence, apart from the better resolution as L increases. (d)
For U = 2t on a 20 × 20 lattice, n(k) is converged to its low temperature value once
T < t/8. (By contrast, the spin correlations reach their ground state values only at
considerably lower T .)

describes a set of itinerant electrons, represented by cjσ(c†jσ), the annihilation (cre-

ation) operators at lattice site j and spin σ. The corresponding number operator

njσ = c†jσcjσ. The first term represents the hopping (kinetic energy) of the electrons.

We will choose the parameter t = 1 to set our unit of energy. The non-interacting

dispersion relation is ε(k) = −2t(cos kx +cos ky) and has bandwidth W = 8t. U is the

on-site repulsion of spin-up and spin-down electrons occupying the same lattice site,

and µ is the chemical potential which controls the particle density. We will mostly be

interested in the properties of the model on N = L × L square lattices at half-filling
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(the number of particles is equal to the number of lattice sites) which occurs at µ = 0

with our particle-hole symmetric choice of the representation of the interaction term.

We will also focus exclusively on the case of the square lattice. This particular

geometry has several interesting features. The half-filled square lattice Fermi surface

exhibits perfect nesting, and the density of states is (logarithmically) divergent. As a

consequence, the antiferromagnetic and insulating transitions occur immediately for

any nonzero value of the interaction strength U , instead of requiring a finite degree

of correlation, as is more generically the case.

Our DQMC algorithm is based on Ref. 42 and has been refined by including

“global moves” to improve ergodicity [43] and “delayed updating” of the fermion

Green’s function [44, 45], which increases the efficiency of the linear algebra. Details

concerning this new code are available at Ref. 46. Some other approaches to fermion

Hubbard model simulations are contained in Refs. 40 and 47–49.

5.3 Single Particle Properties

We begin by showing single-particle properties. The momentum distribution n(k) =

1
2

∑
σ〈c

†
kσckσ〉 is obtained directly in DQMC via Fourier transform of the equal-time

Green’s function Gji = 〈cjσc
†
iσ〉

n(k) = 1 − 1

2N

∑

i,j,σ

eik·(j−i) 〈cjσc
†
iσ〉 . (5.2)

At U = 0 and at half-filling, n(k) = 1(0) inside (outside) a square with vertices (π, 0),

(0, π), (−π, 0), and (0,−π) within the Brillouin zone (BZ). In Fig. 5.1(a), we show

n(k) around the irreducible part of the BZ, while Fig. 5.1(b) focuses on the region

near the Fermi-surface point (π/2, π/2). Interactions broaden the U = 0 Fermi surface

considerably. Figure 5.1(c) shows that data for different lattice sizes fall on the same

curve. Smearing due to finite temperature effects is seen in Fig. 5.1(d) to be small
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below T = t/8 (βt = 8).

Recent optical lattice experiments [30] have imaged this Fermi surface for a three-

dimensional cloud of fermionic 40K atoms prepared in a balanced mixture of two

hyperfine states which act as the Hubbard Hamiltonian spin degree of freedom. In

Fig. 5.2 we show a sequence of color contour plots for different densities at weak and

intermediate couplings, U/t = 2, 4. As in the experiments, and in agreement with

Fig. 5.1, the Fermi surface may still be clearly discerned, and evolves from a circular

topology at low densities into the rotated square as the BZ boundaries are approached

at half-filling. Because of the sign problem [50, 51] which occurs in the doped system,

the temperatures shown in the figure are rather higher than those used in Fig. 5.1 at

half-filling.

Another single-particle quantity of interest is the effective hopping,

teff
t

=
〈c†j+x̂ σcjσ + c†jσcj+x̂ σ〉U
〈c†j+x̂ σcjσ + c†jσcj+x̂ σ〉U=0

, (5.3)

which measures the ratio of the kinetic energy at finite U to its non-interacting value.

As the electron correlations grow larger, hopping is increasingly inhibited, and teff

is diminished. In Fig. 5.3, we show a plot of this ratio as a function of U for a

10 × 10 lattice. Note that despite the insulating nature of the system, the effective

hopping is nonzero and does not serve as an order parameter for the metal-insulator

transition. Indeed, teff is responsible for the superexchange interaction which drives

antiferromagnetic order. The effective hopping can be evaluated analytically at small

and large U [11]. The DQMC data interpolates between these two limits.
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Figure 5.2: Color contour plot depiction of the momentum distribution n(k) and
its gradient ∇n(k). (a) Left to right, n(k) at weak-coupling U = 2t and fillings
ρ = 0.23, 0.41, 0.61, 0.79, and 1.0. (b) ∇n(k) for the same parameters. [(c) and
(d)] Intermediate coupling U = 4t and fillings ρ = 0.21, 0.41, 0.59, 0.79 and 1.0. The
increased breadth of the Fermi surface with interaction strength is evident. The lattice
size = 24× 24 and inverse temperature βt = 8 except at U = 4t and fillings ρ = 0.59
and 0.79, where the sign problem restricts the simulation to inverse temperatures
βt = 6 and 4, respectively.
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Figure 5.3: As the interaction energy U increases, the kinetic energy declines. Here
we show teff/t, the ratio between the expectation value of 〈c†j+x̂ σcjσ〉 at U with its
value at U = 0, for a 10 × 10 lattice. Strong-coupling and perturbative graphs are
also shown for βt = 12.

5.4 Magnetic Correlations

We turn now to two-particle properties, focusing on the magnetic behavior. The

real-space spin-spin correlation function is defined as

C(l) = 〈(nj+l↑ − nj+l↓)(nj↑ − nj↓)〉 (5.4)

and measures the extent to which the z component of spin on site j aligns with that

on a site a distance l away. Although defined in Eq. (5.4) using the z direction, C(l)

is rotationally invariant and in fact, we measure all three components to monitor

ergodicity in our simulations and average over all directions to provide an improved

estimator for the magnetic properties.

The local moment 〈m2〉 = C(0, 0) = 〈(nj↑ − nj↓)
2〉 is the zero separation value
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Figure 5.4: The local moment 〈m2〉 is the zero spatial separation value of the spin-spin
correlation function C(l = (0, 0)). At weak-coupling 〈m2〉 = 1

2
. As the interaction

energy U increases, 〈m2〉 approaches 1, indicating the complete absence of double
occupancy and a well-formed moment on each site.

of the spin-spin correlation function. The singly occupied states | ↑ 〉 and | ↓ 〉 have

〈m2〉 = 1 while the empty and doubly occupied ones | 0 〉 and | ↑↓ 〉, have 〈m2〉 = 0. In

the non-interacting limit, at half-filling, each of the four possible site configurations

is equally likely. Hence the average moment 〈m2〉 = 1
2
.

The on-site repulsion U suppresses the doubly occupied configuration and hence

also the empty one, if the total occupation is fixed at one fermion per site. Ultimately,

charge fluctuations are completely eliminated, 〈m2〉 → 1 and the Hubbard model

maps onto the spin-1
2

Heisenberg Hamiltonian. This is illustrated in Fig. 5.4 for a

10 × 10 lattice. By the time U = W = 8t, the local moment has attained 90% of

its full value. Thermal fluctuations also inhibit local moment formation but the data

shown for different temperatures in Fig. 5.4 indicate they are mostly eliminated by

the time T decreases below t/12 = W/96.
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Figure 5.5: Comparison of the equal-time spin-spin correlation function C(l) on a
20 × 20 lattice with 〈n〉 = 1 and U = 2t for inverse temperatures βt = 12, 20, and
32. The horizontal axis follows the triangular path on the lattice shown in the inset.
Anti-ferromagnetic correlations are present for all temperatures, and saturation is
visible at βt = 32.

Local moments provide an intuitive picture of the onset of long-range correlation in

the strong-coupling regime. They first form on the temperature scale U , which acts to

eliminate double occupancy, and then, at yet lower T , they order via antiferromagnetic

exchange interaction with J = 4t2/U . In contrast with this situation, weak-coupling

correlations are better described as arising from the instability of the Fermi gas against

formation of a spin-density wave, a peculiarity of the square lattice, suggesting an

ordering temperature proportional to U .

Figure 5.5 shows the spin-spin correlation function in the latter regime (U = 2)

for a 20 × 20 lattice at βt = 12, 20, and 32. The correlations extend over the entire

lattice even at βt = 12, i.e., the correlation length has become comparable to the

system size already at this temperature. The values of C(l) continue to grow as T is

increased further, saturating at βt ≃ 32. This observation disproves the commonly
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Figure 5.6: Comparison of the absolute value of the equal-time spin-spin correlation
function C(l) at U = 2t and βt = 32 for L×L lattices with L = 8, 12, 16, 20, and 24.
The inset is a close up view of the long-range correlations.

held idea that on finite clusters, the order parameter stop growing after the correlation

length exceeds the linear size of the system. Such saturation happens at a much lower

temperature, only after thermal fluctuations have been largely eliminated.

A comparison of |C(l)| for U = 2 and different lattice sizes is given in Fig. 5.6,

where data for L = 8 up to L = 24 are plotted and we have taken the absolute value to

make the convergence with L clearer. We have fixed βt = 32 so the spin correlations

have reached their asymptotic low-temperature values. As expected, the smallest

lattice sizes (8×8) overestimate the tendency to order, with |C(l)| significantly larger

than values for larger L. However, by the time L = 20 the finite-size effects are small.

We next compare the spin-spin correlation function for various U at low temper-

atures on a 24 × 24 lattice in Fig. 5.7. Long-range order is present at all interaction

strengths. For each U , we have chosen temperatures such that the ground state

has been reached for this lattice size. Since statistical fluctuations increase signifi-
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Figure 5.7: The equal-time spin-spin correlation function C(l) on a 24 × 24 lattice
with 〈n〉 = 1. Data are shown for various U at low temperatures. Antiferromag-
netic correlations are enhanced for larger values of U . The increase in statitstical
fluctuations with interaction strength in the DQMC method is evident.

cantly with U and with β in DQMC, it is advantageous not to simulate unnecessarily

cold systems. As discussed above, such temperature should increase with U in the

weak-coupling regime and scale proportionally to 1/U in the strong-coupling one.

We indeed find the highest saturation temperatures in the intermediate regime, at

U/t ≃ 4.

The magnetic structure factor S(k) is the Fourier transform of the real-space

spin-spin correlation function C(l),

S(k) =
∑

l

eik·lC(l) , (5.5)

where S(k) is plotted in Fig. 5.8 as a function of k for several lattice sizes with U = 2t

and βt = 32. S(k) is small and lattice size independent away from the ordering vector

k = Q ≡ (π, π). The sharp peak at Q emphasizes the antiferromagnetic nature of
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Figure 5.8: The magnetic structure factor S(k) for U = 2t and βt = 32. The
horizontal axis traces out the triangular path shown in the inset. The function is
sharply peaked at k = Q ≡ (π, π).

the correlations on a half-filled lattice.

In order to understand the implications of the lattice size dependence at the or-

dering vector in Fig. 5.8, we show in Fig. 5.9 the antiferromagnetic structure factor

for U = 2t as a function of inverse temperature for various L. As expected, as L in-

creases, a larger value of β is required to eliminate the low-lying spin-wave excitations

and to saturate the structure factor to its ground state value.

It is seen from Eq. (5.5) that S(Q) will grow linearly with the number of sites

N = L2 if there is long range antiferromagnetic order. Huse[52] has used spin-wave

theory to work out the first correction to this scaling,

S(π, π)

L2
=

m2
af

3
+

a

L
. (5.6)

Here maf is the antiferromagnetic order parameter. maf can also be extracted from
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Figure 5.9: The antiferromagnetic structure factor S(Q) as a function of inverse
temperature at U = 2t for L × L lattices with L = 4, 6, 8, 10, 12, 14, 16, 18, and 20.

the spin-spin correlation function between the two most distant points on a lattice,

C(L/2, L/2), with a similar spin-wave theory correction,

C(L/2, L/2) =
m2

af

3
+

b

L
. (5.7)

We expect that the correction b < a since the structure factor includes spin correla-

tions at short distances which markedly exceed m2
af , in addition to the finite lattice

effects at larger length scales. For similar reasons S is expected to show larger cor-

rections to the asymptotic 1/L scaling behavior than C. Part of the origin of these

corrections is trivial and evident from Fig. 5.6: S is the average of quantities as dif-

ferent as C(0, 0) and C(L/2, L/2). In the large L limit, S and its 1/L finite-size error

are dominated by the contribution of the large distance correlations but for small L
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Figure 5.10: Scaling results for U = 5t and βt = 20. (a) Convergence of the
extrapolated value of Sn(Q) as a function of the number of sites in the excluded
cluster. See Eq. (5.9) for the definition of Sn. A large fraction of the 1/L2 bias is
removed without loss in precision. C(L/2, L/2) is plagued by a much larger error bar.
(b) Scaling of Sn(Q) for n = 0, 1, and 5 and C(L/2, L/2) as a function of the inverse
linear lattice size. The extrapolation was performed via a linear least-squares fit in
all cases.
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a bias roughly proportional to

C(0, 0) − C(L/2, L/2)

L2
(5.8)

is clearly present. This bias is larger for small U since the numerator in Eq. (5.8)

gets smaller with increasing U and saturates to the value of the Heisenberg model at

U/t ≃ 8. On the other hand, the error bars on S are often significantly smaller than

on C, a fact that is certainly advantageous in the final finite-size scaling analysis.

A measure of magnetic order that incorporates the extended linearity of C and

the better statistical property of S is given by

Sn(Q) =
L2

L2 − n

∑

l,l>lc

eiQ·lC(l) , (5.9)

where n is the number of distances shorter than lc. Equation (5.9) is nothing but

the interpolation between S, corresponding to n = 0, and C, the case of n = L2 − 1.

Figure 5.10(a) shows how the L → ∞ extrapolation evolves by increasing lc. When

lc is small the linear extrapolation is significantly biased by the small-L results. As

lc increases one reaches statistical convergence already for lc = 1 (corresponding to

n = 5, the cluster formed by the origin and the nearest neighbors) with minimal loss

of statistical precision. That lc = 1 is all is needed to reach statistical convergence is

also manifest in Fig. 5.6 where C(l) drops to almost a constant beyond this value.

In Fig. 5.10(b) we show Sn(Q)/L2 versus inverse linear lattice size 1/L for U = 5t

and n = 0, 1, and 5 since as shown in Fig. 5.10(a), there is no real gain in accu-

racy by excluding larger subclusters. The inverse temperature is βt = 20, so that

S has reached its zero-temperature value regardless of L. We have repeated this

finite-size scaling analysis for couplings U/t = 2, 3, 4, 6, 7, and 8 and extrapolated

to infinite L using a linear least-square fit in 1/L. In Fig. 5.11, we show the result-

ing antiferromagnetic order parameter maf as a function of U/t employing the same
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Figure 5.11: Order parameter maf as a function of the interaction strength U . Earlier
DQMC values (Ref. 53) are circles and Hartree-Fock theory scaled by the Heisenberg
result from Ref. 50 are shown as a dashed magenta line. The green line (short dashes)
and the brown line (dashed and dotted) indicate the strong-coupling Heisenberg limits
from QMC (Ref. 54) and spin-only low-energy theory with ring-exchange (Ref. 55),
respectively. Also shown is the RPA calculation of Ref. 56 (solid black line).

normalization convention of the other Hubbard model studies reported in this figure.

The early DQMC values obtained by Hirsch and Tang,[53] which are consistent with

the ones obtained here, are shown.

Figure 5.11 also summarizes a number of the available analytic treatments. The

dashed magenta line is the result of Hartree-Fock theory scaled by the Heisenberg

result at strong-coupling.[50] The solid black line is the random-phase-approximation

(RPA) treatment in which the single-particle propagators in the usual RPA sum

are also dressed by the one-loop paramagnon correction to their self-energy [56]. Also

shown (brown line) are the results of a spin-only low-energy theory [55] which includes

not only the usual Heisenberg J = 4t2/U but also all higher order (e.g., ring exchange)

terms up to t4/U3. Finally, the dotted green line is the Heisenberg value determined
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by Sandvik.[54]

5.5 Summary

In this chapter we have presented the results of determinant quantum Monte Carlo cal-

culations for the magnetic properties of the half-filled square lattice Hubbard Hamil-

tonian. DQMC allows us to bridge the weak-coupling and strong-coupling regimes

with a single methodology, and a particular outcome of our work has been the cal-

culation of the antiferromagnetic order parameter in the ground state as a function

of U/t. We expect these values will be useful in validating OLE experiments on the

fermion Hubbard model.

By using an improved DQMC code, we have been also able to provide results

on larger lattices than those originally explored.[11] This not only has allowed us

to do more accurate finite-size scaling for the order parameter but we also obtain

considerably better momentum resolution and hence a description of the Green’s

function G(k) which also offers the prospect of improved contact with time of flight

images from optical lattice emulators.[29–32]

This study demonstrates a significantly improved capability to simulate inter-

acting fermion systems, driven by more powerful hardware as well as algorithmic

advances. Systems of 500 sites (fermions) can now be handled on a modest cluster

of desktop computers. Larger system simulations can easily be contemplated using

more powerful hardware and would scale as the cube of the number of particles, in

the absence of the sign problem. This remaining sign problem bottleneck prevents

the study of the densities of most interest to high-temperature superconductivity,

i.e., dopings of 5 − 15% away from half-filling, and motivates the interest in analog

computation for the Hubbard Hamiltonian.[57] It should be noted, however, that the

sign problem can be rather modest for other densities, e.g., quarter-filling, where we
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now have the capability to undertake large scale studies.
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Chapter 6

Conclusion

In this dissertation, I have investigated the properties and phases of the Hubbard

Hamiltonian in a number of different contexts. In one dimension, I have studied

the effects of lattice fluctuations on the extended Hubbard model and the impact of

adding fermions to bosons in an optical trap (the Bose-Fermi Hubbard model). Lastly,

I have studied the properties of the fermion Hubbard Hamiltonian in two dimensions,

particularly the momentum distribution at various fillings and the magnetic order at

half-filling. These projects are linked together by a common theme of understanding

the effect of electron-electron interactions in causing ordered phases in solids.

For the extended Hubbard Hamiltonian, we have examined the impact of a cou-

pling to the lattice on the spin, charge, and bond order correlations with world-line

quantum Monte Carlo. We find that a coupling to the lattice via a static, alternating

one-body potential ∆ results in an enhancement of the charge density wave (CDW)

correlations, causing a reduction in the antiferromagnetism. The boundary between

the spin density wave (SDW) and CDW phases is also characterized by abrupt evo-

lution of the individual components of the energy. The energy associated with U

increases with the development of double occupancy, and the energy associated with

V decreases sharply in the CDW phase. Moreover, the kinetic energy has a maximum
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along the SDW-CDW transition line, like the bond-ordered wave (BOW) susceptibil-

ity χBOW, indicating a tendency for BOW order.

When we couple to dynamical lattice distortions via a Holstein electron-phonon

coupling, a similar effect occurs. The SDW-CDW transition as a function of the

electron-phonon coupling λ is, however, more abrupt than the transition for the static

coupling to the lattice ∆, as λ spontaneously breaks the translational symmetry of

the lattice. In contrast, ∆ explicitly breaks the lattice symmetry, resulting in an

increase of CDW order within the SDW phase and a less dramatic crossover.

Comparing the phase boundaries for the QMC results with the t = 0 limit illus-

trates that the two types of coupling have a distinct difference in behavior. When the

coupling is static, the CDW phase is generally enhanced by t. At strong-coupling, the

hopping has a very small effect on the SDW-CDW phase boundary, while for weak

intersite interactions V , the phase boundary is sharply shifted in favor of the CDW

phase. When the lattice degrees of freedom are dynamic, the SDW-CDW phase

boundary in QMC is uniformly shifted from the t = 0 line to increase the critical

intersite repulsion, favoring SDW order.

In Chapter 4, the one-dimensional Bose-Fermi Hubbard Hamiltonian was studied

with the canonical worm algorithm. In contrast with previous QMC studies that only

found that the addition of fermions to a boson system cause an enhancement of the

visibility V (and consequently the superfluidity), we showed that it is possible for

fermions to force the bosons in the center of the trap to become a Mott insulator,

causing a reduction in V . We also found that V exhibits kinks reminiscent of those

in the pure boson system. The number of kinks in the visibility is directly correlated

to the number of the fermions in the trap, and the densities for both particle species

overlap exactly in the trap center. These kinks also appear in the trap, interaction,

and kinetic energies and coincide with rapid changes in the bosonic and fermionic

densities. We found that the center of the trap is occupied by a molecular superfluid,
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and that bound pairs of fermions and bosons are being destroyed as the boson-boson

interaction strength Ubb is increased.

Next, determinant quantum Monte Carlo was used to examine the properties of

the half-filled, two-dimensional fermion Hubbard model. The momentum distribution

n(k) shows a sharp Fermi surface at weak-coupling, while large interaction strength

U broadens n(k). Away from half-filling, the Fermi surface can still be discerned

and evolves from a circular topology at low fillings into the rotated square at half-

filling. The effective hopping teff is measured as a function of U , and increasing the

interaction strength inhibits the hopping but teff remains non-zero in the Heisenberg

limit.

The magnetic properties of this system were extensively studied. The local mo-

ment 〈m2〉 is the zero separation value of the spin-spin correlation function C(l)

and was measured as a function of the interaction strength. The on-site repulsion

suppresses double occupancy and 〈m2〉 → 1 in the Heisenberg limit. For non-zero

separation, the spin-spin correlation function exhibits antiferromagnetic correlations

with long range order. In three dimensions there is a finite Néel temperature TN at

which the system becomes magnetically ordered. In two dimensions, TN = 0 for all U ,

but an analog of TN is the temperature T∗ at which the correlation length ξ exceeds

the lattice size. This is maximized at intermediate U . Additionally, we measure the

magnetic structure factor S(k), which is Fourier transform of the spin-spin correla-

tion function. It is sharply peaked at Q = (π, π) and saturates at low temperatures,

where the saturation temperature depends both on the lattice size and U .

Finite-size scaling can be performed on both the spin-spin correlation function

and its Fourier transform to extract the magnetic order parameter maf . We find,

however, that the magnetic structure factor produces better statistics than C(l), but

C(l) has extended linearity. We introduce a measure of the magnetic order, the

excluded cluster structure factor Sn(Q), that incorporates these features of the spin-
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spin correlation function and the magnetic structure factor. By performing finite-size

analysis on Sn(Q), we measure the interaction dependence of the antiferromagnetic

order parameter maf(U) from weak-coupling to the strong-coupling Heisenberg limit.

We have shown that the two-dimensional Hubbard model can be studied on large

lattices. Recent experiments have been done for fermions in an optical lattice at

temperatures that are near the Fermi temperature. Large lattices are needed because

the confining potential causes a spatial inhomogeneity of the density which can only

be resolved if the system is many tens of sites in linear dimension. Currently, we

can simulate temperatures two to four times colder than state of the art experiments

before the fermion sign problem makes the simulation impossible. We are currently

investigating the local properties of the system, including the density and the number

fluctuation, for every phase in the wedding cake structure. In addition, we will

measure the on-site, nearest-neighbor, and next-nearest-neighbor spin correlations.

For systems with a Mott shoulder, we believe that magnetic order will persist for these

distances along the Mott shoulder (which is a ring around a superfluid center). One

bright area for the future of quantum simulations lies in studying such inhomogeneous

systems.



Glossary

bond ordered wave (BOW) A phase of matter characterized by alternating high

and low hopping (kinetic energy).

Bose-Einstein condensation A state of matter in which a large fraction of the

bosons in a system collapse or condense into the lowest quantum state.

charge density wave (CDW) A phase of matter characterized by a spatial oscil-

lation of charge density.

density profile Spatial distribution of particles

first-order phase transition The first derivative of the free energy with respect to

a thermodynamic variable has a discontinuity.

lattice depth Amplitude of the optical lattice potential.

Mott insulator An insulator that results from the magnetic correlations in a ma-

terial

second-order phase transition The first derivative of the free energy with respect

to a thermodynamic variable is continuous but the second derivative exhibits a

discontinuity.

spin density wave (SDW) A antiferromagnetic state is characterized by a spatial

oscillation of the electron-spin density.
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superfluid A phase of matter in which liquids move without friction (the viscosity

is zero). For bosons, it is a consequence of Bose-Einstein condensation. For

fermions, superfluidity can be achieved through the formation of Cooper pairs.

supersolid A spatially ordered material with superfluid properties. The system has

simultaneous diagonal and off-diagonal long-range-order.

tricritical point A point in the phase diagram of a system at which three-phase

coexistance terminates.
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