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We demonstrate, by considering the triangular lattice spin-1=2 Heisenberg model, that Monte Carlo

sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-

principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—

cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the

magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet

regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all

accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the

absence of the magnetic order in the ground state. We critically examine the implications of this unusual

scenario.
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The method of bold diagrammatic Monte Carlo simula-
tion (BDMC) [1] allows one to sample contributions from
millions of skeleton Feynman diagrams and extrapolate the
results to the infinite diagram order, provided the series is
convergent (or subject to resummation beyond the conver-
gence radius). Recent experimentally certified application
of BDMC simulations to unitary fermions down to the point
of the superfluid transition [2] makes a strong case
for BDMC method as a generic method for dealing with
correlated fermions described by Hamiltonians without
small parameters. One intriguing avenue to explore is to
apply it to frustrated lattice spin systems, where, on one
hand, standard Monte Carlo (MC) simulation fails because
of the sign problem [3], and, on the other hand, the system’s
Hamiltonian can be always written in the fermionic repre-
sentation [4–6] which contains no large parameters—
exactly what is needed for the anticipated convergence of
BDMC series with the diagram order.

The BDMC approach is based on the sign blessing
phenomenon, when, despite the factorial increase in the
number of diagrams with expansion order, the series fea-
tures a finite convergence radius because of dramatic (sign
alternation induced) compensation between the diagrams.
With the finite convergence radius, the series can be
summed either directly, or with resummation techniques
that can be potentially applied down to the critical tem-
perature of the phase transition, if any. (At the critical
temperature thermodynamic functions become nonana-
lytic, and the diagrammatic expansion involving explicit
symmetry breaking by the finite order parameter is neces-
sary to treat the critical region and the phase with broken
symmetry.) In the absence of the sign blessing, the resum-
mation protocols become questionable in view of the
known mathematical theorems regarding the asymptotic

series. At the moment, there is no theory allowing one
to prove the existence of a finite convergence radius
analytically. The absence of Dyson’s collapse [7] in a
given fermionic system is merely providing hope that the
corresponding diagrammatic series is not asymptotic and
cannot be a priori taken as a sufficient condition for the
sign blessing. Hence, the applicability of BDMC simula-
tions to a given system can be established only on the
basis of a direct numerical evidence for series convergence
and comparison with either experiment or alternative
controllable techniques, such as high-temperature series
[8] and numerical linked cluster (NLC) expansions [9].
In this Letter, we report the first successful application
of BDMC simulations to fermionized quantum spin sys-
tems by simulating the canonical model of frustrated quan-
tum magnetism—the triangular lattice antiferromagnetic
spin-1=2 Heisenberg model (TLHA). We demonstrate that
BDMC method for this frustrated magnet is indeed subject
to the sign blessing phenomenon which allows us to obtain
basic static and dynamic correlation functions with con-
trollable (about one percent or better) accuracy. The agree-
ment with extrapolated high-temperature expansions is
excellent.
In addition, we report a very surprising finding of

extreme similarity between short-distance static spin
correlations of the quantum and classical spin models,
evaluated at different but uniquely related to each other
temperatures. This accurate (within the error bars)
quantum-to-classical correspondence holds at all tempera-
tures accessible to us, T � 0:375 (here and below tempera-
ture is measured in the units of the exchange constant J).
Specifically, the entire static correlation function of the
quantum model at a given temperature T—having quite
nontrivial pattern of sign-alternating spatial dependence
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and temperature evolution, thus forming a system’s
fingerprint—turns out to be equal, up to a global tempera-
ture dependent normalization factor, to its classical coun-
terpart at a certain temperature Tcl � TclðTÞ. Extrapolation
of the obtained TclðTÞ curve to the T ¼ 0 limit results in a
finite value of Tclð0Þ> 0, suggesting a quantum-disordered
ground state of the quantum model.

The Hamiltonian of the TLHA is given by

H ¼ J
X
hi;ji

~Si � ~Sj: (1)

Here ~Si is the spin-1=2 operator on the ith site of the
triangular lattice and the sum is over the nearest neighbor
pairs coupled by the positive exchange integral, J > 0.
As found by Popov and Fedotov [4,5], the grand canonical
Gibbs distribution of the model (1) can be reformulated
identically in terms of purely fermionic operators using

~Si ¼ 1

2

X
�;�

fyi� ~���fi�; (2)

where fi� is the second quantized operator annihilating a

fermion with spin projection �, � ¼ �1 on site i, and ~�
are the Pauli matrices. The representation (2) leads to a
flat-band fermionic Hamiltonian, HF, with two-body inter-
actions and amenable to direct diagrammatic treatment. To
eliminate statistical contributions from nonphysical states
having either zero or two fermions, Ref. [4] introduced an
imaginary chemical potential to HF:

HF !HF� ið�=2ÞTX
i

ðni� 1Þ; ni ¼
X
�

fyi�fi�: (3)

The added term commutes with the original Hamiltonian
and has no effect on properties of the physical subspace
fni ¼ 1g whatsoever. Moreover, the grand canonical parti-
tion functions and spin-spin correlation functions of the
original spin model and its fermionic version are also
identical because (i) physical and nonphysical sites de-
couple in the trace and (ii) the trace over nonphysical states
yields identical zero on every site. As a result, one arrives
at a rather standard Hamiltonian for fermions interacting
through two-body terms. A complex value of the chemical
potential, which can also be viewed as a peculiar shift
of the fermonicMatsubara frequency!n¼2�ðnþ1=2ÞT!
2�ðnþ1=4ÞT, is a small price to pay for the luxury of having
the diagrammatic technique.

We perform BDMC simulations using the standard
G2W-skeleton diagrammatic expansion of the fermionic
model (1)–(3) in the real space—imaginary time repre-
sentation [10], see also Ref. [11]. The first and most
important question to answer is whether the sign blessing
phenomenon indeed takes place. In Fig. 1 we show
comparison between the calculated answer for the static
uniform magnetic susceptibility, �u, and the NLC expan-
sion result [9] at T ¼ 2. This temperature is low enough

to ensure that we are in the regime of strong correlations
because �u is nearly a factor of two smaller than the

free-spin answer �ð0Þ
u ¼ 1=4T. On the other hand, this

temperature is high enough to be sure that the high-
temperature series can be described by Padé approxim-
ants without significant systematic deviations from the
exact answer [8,9] (at slightly lower temperature the
bare NLC series starts to diverge). We clearly see that
the BDMC series converges to the correct result with an
accuracy of about three meaningful digits and there is no
statistically significant change when more than a hundred
thousand of 7th order diagrams [12] are accounted for.
The error bar for the 7th order point is significantly
increased due to factorial growth in computational com-
plexity. Feynman diagrams are usually formulated for the
system in the thermodynamic limit. In practice, for rea-
sons of convenient data handling, our code works with
finite system sizes L with periodic boundary conditions
(its performance does not depend on L). In all cases we
choose L to be much larger than the correlation length �
and check that doubling the system size makes no de-
tectable changes in the final answer. The 4th order result
can be obtained after several hours of CPU time on a
single processor.
Interestingly enough, when temperature is lowered

down to T ¼ 1 which is significantly below the point
where the bare NLC series start to diverge, see Fig. 2,
the BDMC series continue to converge exponentially. This
underlines the importance of performing simulations
within the self-consistent skeleton formulation.
In Fig. 2 we show results of the BDMC simulation per-

formed at temperatures significantly below the mean-field
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FIG. 1 (color online). Uniform susceptibility calculated within
the G2W-skeleton expansion as a function of the maximum
diagram order retained in the BDMC simulation (black dots)
for T=J ¼ 2. The result of the high-temperature expansion (with
Padé approximant extrapolation) [8,9] is shown by the red square
and horizontal line.
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transition temperature. We observe excellent agreement
(within our error bars) with the Padé approximants used
to extrapolate the high-temperature series data to lower
temperature [8]. Within the current protocol of dealing
with skeleton diagrams we were not able to go to a lower
temperature due to the development of near singularity in
the response function (and thus in the effective-interaction
propagator) at the classical ordering wave vector Q ¼
ð4�=3; 0Þ, in units of inverse lattice constant. In future
work, we plan to apply pole-regularization schemes to
overcome this technical problem.

We now turn to the static susceptibility

�ðrÞ ¼
Z 1=T

0
d�hSz0ð0ÞSzrð�Þi: (4)

Here Szrð�Þ is the Matsubara spin operator on the lattice site
labeled by the integer index vector r. For the simplicity of
comparing susceptibility (4) with its classical counterpart,
we normalize it to unity at the origin, �ðrÞ ! �ðrÞ=�ð0Þ,
doing the same with the classical �clðrÞ. The latter is
obtained by Metropolis simulation of the classical
Heisenberg model (1) in which quantum spin operators
are replaced with classical unit vectors nr. For every ac-
cessible temperature T we observe a perfect match (within
the error bars, which are about 1%) between quantum
correlator �ðrÞ and its classical counterpart, for r ranging
from 1 to 5 (which includes 10 different sites), calculated at
a certain temperature TclðTÞ. A typical example of the
match is presented in Fig. 3. We note in passing that the
equal-time correlation function, hSz0ð0ÞSzrð0Þi, while having
qualitatively similar shape to that of (4), does not match the
classical correlator �clðrÞ ¼ hnz0nzri, especially so for sites

at which the sign of the correlation changes with tempera-
ture (such as sites 3 and 7 in Fig. 3 for which the sign of
�ðrÞ changes from ferromagnetic at high T to antiferro-
magnetic one below T � 0:5).
Mapping long-range correlations in quantum models

onto the renormalized classical behavior is rather standard
on approach to the ordered state [14]. What we observe is
fundamentally different: quantum-to-classical correspon-
dence, or QCC, is valid in the intermediate temperature
regime at all distances, including nearest-neighbor sites,
and when the correlation length � is still very short, of the
order of the lattice spacing, �� 1. It is worth noting that
this short-distance correspondence is also very different
from the high-T quasiclassical wave regime of Ref. [14]
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FIG. 3 (color online). Left and middle panels: Perfect match of the normalized quantum and classical responses at the corresponding
temperatures, T and TclðTÞ. Points are ordered according to their distance from the origin, r, as is illustrated in the right top corner. The
sign of the correlator is indicated explicitly next to the point. Right Panel: Mapping between the classical and quantum temperatures.
The solid (continued as dashed) line is the fitting function, y ¼ ð4x2 þ Axþ BÞ=ð3xþ CÞ, with A ¼ 0:462, B ¼ 1:065, C ¼ 3:825,
which satisfies the asymptotic law y ¼ 4x=3 expected in the high-temperature limit shown by the dash-dotted line. The red arrow
indicates the position of the chiral transition advocated in Refs. [27,30,31]. For comparison, the square lattice data (stars) are shown in
the inset.
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FIG. 2 (color online). Uniform susceptibility as a function of
temperature (red dots) for the triangular Heisenberg antiferro-
magnet calculated within the BDMC approach. NLC expansion
results based on triangles (labeled as 7T and 8T) and sites
(labeled as 12S and 13S) [9] are shown along with two different
Padé approximant extrapolations [8].
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which allows for the classical description at distances
r� � � 1.

We find that QCC also takes place for the s ¼ 1=2
square lattice Heisenberg antiferromagnet where, thanks
to the absence of a sign problem for path-integral
Monte Carlo simulation, it has a relative accuracy of
�0:3% at all temperatures (down to the ground state in a
finite-size system). These facts suggest that QCC in 2D is
extremely accurate and thus may take place for other
lattices (however, it does not hold for 1D chains).

The quality of the matching procedure allows us to
establish the TclðTÞ correspondence with an accuracy of
about one percent. In the right panel of Fig. 3 we plot the
final result along with the asymptotic high-temperature
relation Tcl ¼ ð4=3ÞT reflecting the difference between
the ðSzÞ2 ¼ 1=4 and hðnzÞ2i ¼ 1=3. An immediate conse-
quence of observed QCC in Fig. 3 is that the entire q
dependence of the static susceptibility �ðq; !n ¼ 0Þ of
the quantum model is given by the susceptibility of the
classical model at temperature TclðTÞ, which is readily
available from classical Monte Carlo simulations.

Due to the limited low-temperature range of the TclðTÞ
curve for the TLHA it is perhaps too early to make any
definite conclusion regarding its extrapolation down to the
T ¼ 0 limit. One possibility is that it smoothly extrapolates
to a finite value Tclð0Þ ¼ 0:28, implying that the ground
state is some kind of a spin liquid. This possibility was
discussed by Anderson [15] almost forty years ago but was
subsequently rejected on the basis of numerous investiga-
tions which include exact diagonalization [16–18], Green’s
function MC calculations [19], series expansion [20], den-
sity matrix renormalization group [21] studies, as well as
large-S (spin wave) [22–24], large-N [25], and functional
renormalization group analysis [26]. Note, however, that
the spin correlation length for the classical model at
Tcl � 0:28 is above 103 lattice periods [27] and thus simu-
lations of small system sizes L� 10 would be severely
affected by finite-size effects. The value of Tclð0Þ � 0:28
is surprisingly close (essentially within the error bars) to
the temperature obtained by extrapolating transition tem-
peratures for the q ¼ 3 Potts transition in finite magnetic
fields h to the h ¼ 0 limit [28,29]. Large-scale MC
simulations performed in zero magnetic field also identify
Tcl ¼ 0:285ð5Þ as the critical point of the chiral transition
[27,30,31]. However, the debate with regards to the
existence of the chiral transition is not settled yet—an
alternative scenario [32,33] predicts a sharp crossover to
a more standard nonlinear sigma-model type behavior
around Tcl ¼ 0:28.

The other possibility is that the QCC curve TclðTÞ will
cross over to the standard renormalized classical behavior
in the long wavelength limit and will arrive at Tclð0Þ ¼ 0,
implying the ordered quantum ground state. This is exactly
what happens for the square lattice antiferomagnet, see
inset in the right panel in Fig. 3. In fact, it is also known

(and can be readily deduced from the correspondence plot
and Fig. 2 of Ref. [27]) that in the TLHA the renormalized
classical regime with a large correlation length emerges
only below temperature T � 0:25 [34,35], which is well
below our lowest data point T ¼ 0:375. Clearly, more data
at lower temperatures are required in order to resolve this
fascinating question.
The normalization factor �ð0Þ � �ðr ¼ 0; !m ¼ 0Þ

in Fig. 3 is given by the local static susceptibility which
of course is different for the classical and quantum
system. For the classical Heisenberg model T�ð0Þ is sim-
ply 1=3, independent of temperature, while in the quantum
system this quantity is T dependent, as Fig. 4 shows. The
same figure also shows the local spin correlation function
at � ¼ �=2, �ðr¼0;�¼�=2Þ¼T

P
me

i�m�ðr¼0;!mÞ.
This too probes quantum fluctuations, i.e., contributions
to the sum from terms with !m � 0. As expected, both
curves deviate from unity with the lowering of T, reflecting
the increasing role of quantum fluctuations.
Perhaps the most striking feature of QCC is its predictive

power in the search for spin-liquid states. Indeed, if QCC
is confirmed for a given model of quantum magnetism and
the classical ground state is not ordered due to macroscopic
degeneracy then the quantum ground state is not ordered as
well; i.e., it is a spin liquid. Moreover, even if the classical
ground state is ordered but the correspondence curve TclðTÞ
is such that Tclð0Þ � 0, the quantum ground state is still not
ordered similarly to its finite-temperature classical coun-
terpart. While the final outcome for the TLHA remains to
be seen, our data convincingly show an unusual classical-
to-quantum correspondence with regards to the static spin
correlations.
We thank M. Rigol for comments and the original NLC

data and R. R. P. Singh for comments. This work was

FIG. 4 (color online). Blue (square) symbols: local static sus-
ceptibility �ðr ¼ 0; !m ¼ 0Þ, multiplied by 4T, as a function of
T=J. Black circles show T dependence of the (4 times) local spin
correlation function �ðr ¼ 0; � ¼ �=2Þ.
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