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The existence of quantum spin liquids was first conjectured by Pomeranchuk some 70 years ago, who

argued that frustration in simple antiferromagnetic theories could result in a Fermi-liquid-like state for

spinon excitations. Here we show that a simple quantum spin model on a honeycomb lattice hosts the long

sought for Bose metal with a clearly identifiable Bose surface. The complete phase diagram of the model

is determined via exact diagonalization and is shown to include four distinct phases separated by three

quantum phase transitions.
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We learn early in our education that as matter is cooled
down to low temperatures it normally experiences transi-
tions into ordered states of various kinds—crystalline solid
structures, ordered magnetic phases, superfluid and super-
conducting states, etc. It is also common knowledge that
upon heating the matter, the ordered phases melt into the
familiar gaseous or liquid classical states that we encounter
routinely in our everyday lives. A more specialized but
equally well-established result is that no order that breaks a
continuous symmetry can survive in one-dimensional sys-
tems [1], because quantum zero-point motion acts there
similarly to thermal effects and ‘‘quantum-melts’’ ordered
phases even at zero temperature.

It has been a long-standing and important question in
physics whether quantum fluctuations in higher-
dimensional quantum spin or boson systems can have the
same debilitating effect, giving way to quantum liquids [2].
The interest in such a hypothetical spin liquid, also known
as a Bose or spin metal [3], has experienced multiple
revivals with the most prominent one associated with the
discovery of high-temperature superconductivity [4,5].
However, despite the decades of intensive search, no con-
vincing examples of a gapless spin liquid have been found
in any realistic two-dimensional quantum model.

In models that are fermionizable via the Jordan-Wigner
transformation [6,7], the existence of spin liquids has now
been firmly established [7,8], but the physics there mimics
somewhat the one-dimensional result [9–11]. What re-
mains of crucial importance is whether a truly higher-
dimensional spin system may host a quantum liquid.
Among the influential recent results here are the stability
argument by Hermele et al. [12], who showed that there is
no fundamental obstacle to the existence of quantum spin
liquids, and a complete classification of quantum orders by
Wen [13], who demonstrated that an amazing variety of
hypothetical gapless spin liquids can all be divided into
several distinct classes, which include stable phases with

low-lying fermionic spinon excitations that resemble a
Fermi-liquid state. Also, the work of Motrunich, Fisher,
and Sheng [14,15] provides strong arguments in favor of
the existence of such putative two-dimensional Bose met-
als and suggests that the strong singularity in the spin
structure factor at a Bose surface is one of the hallmark
phenomena of this exotic state.
The main idea is that, despite the fact that the underlying

particles are bosons, the collective behaviors in these
strongly correlated Bose-metal states show a strong anal-
ogy to a Fermi liquid formed by fermionic particles. In a
Fermi liquid, the fermion statistics dictate the formation of
Fermi surfaces, which possess singular behavior. In a Bose
metal, despite the absence of Pauli’s principle, similar
singularities also arise and define a surface in momentum
space, known as a Bose surface [14,15]. The existence of a
Bose surface is the key property and most striking experi-
mental feature of a Bose metal. However, unlike a Fermi
liquid, where the Luttinger theorem requires that the Fermi
wave vector depends on the density of fermions, the Bose
wave vector in a Bose metal depends on the control pa-
rameters and can vary continuously even at fixed particle
density.
Here we provide strong evidence that a model as simple

as the XY-spin model on a honeycomb lattice with nearest-
neighbor (NN) and next-to-nearest-neighbor (NNN) inter-
actions hosts, among other phases, a Bose metal with a
clearly identifiable Bose surface. Although we came across
this finding serendipitously, we would like to provide
qualitative arguments that could potentially guide searches
for other such interesting spin models. Note that the de-
scription of a spin Fermi-liquid-like state is necessarily a
gauge theory [5,16,17], which is very similar to that of the
Halperin-Lee-Read [18] quantized Hall (QH) state. In the
latter gapless phase, the interacting electron system in a
large classical external field gives rise to composite fermi-
ons in zero classical field but coupled to a fluctuating
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quantum field—the Chern-Simons field that implements
flux attachment. The natural question here, considered
before, e.g., in Refs. [19,20], is whether a fractional QH
state of this or any other type is possible in a sensible lattice
model.

The above remarks are relevant to our work because our
simple Hamiltonian, see Eq. (1) below, can be viewed as a
natural ‘‘trial model’’ for such a possible fractional lattice
QH state per the following construction. Take the Haldane
model [21] of noninteracting electrons on a honeycomb
lattice with simple NN hoppings and complex NNN hop-
pings, jJ2jei�. If � is nonzero it realizes a topological
insulator or lattice ‘‘integer’’ QH state. Replace the fermi-
ons with hard-core bosons at half-filling [22] and it be-
comes a promising strongly interacting model. Notably, the
most frustrated limit corresponds to� ¼ �, which maps at
half-filling to the following Hamiltonian

H ¼ J1
X

hiji
ðbyi bj þ H:c:Þ þ J2

X

hhijii
ðbyi bj þ H:c:Þ; (1)

where byi (bi) is an operator that creates (annihilates) a
hard-core boson on site i. Here, we require the sign of J2 to
be positive (that is, � ¼ �), while the sign of J1 is in fact
irrelevant because of the particle-hole symmetry of the
honeycomb lattice (bi ! �bi for one of the two sublatti-
ces). In what follows, J1 ¼ 1 sets our unit of energy.
Note that Hamiltonian (1) maps to a frustrated

antiferromagnetic-XY model (byi ! Sþi and bi ! S�i ),

H ¼ J1
X

hiji
ðSþi S�j þ H:c:Þ þ J2

X

hhijii
ðSþi S�j þ H:c:Þ: (2)

The properties of this Hamiltonian are governed by the
dimensionless control parameter J2=J1. The limits of this
model are well understood. For J2=J1 ¼ 0, the ground state

of this Hamiltonian is an antiferromagnet [Fig. 1(b)].
When J2=J1 ! 1, however, the ground state is a spin
wave with 120� order [Fig. 1(d)]. Because the system is
highly frustrated, there is a strong possibility of intermedi-
ate phases. In Fig. 1(a), we show the phase diagram for
24-site clusters as a function of J2=J1, finding two inter-
mediate phases: (1) a quantum spin liquid and (2) an exotic
spin wave state [Fig. 1(c)].
To pin down the phase boundaries, we consider the

ground-state fidelity metric g, which has been shown to
be an unbiased and sensitive indicator of quantum phase
transitions [23,24]. In Fig. 2(a), we show the fidelity metric
for three different 24-site clusters [22,25]. There are three
peaks in g, indicating three quantum phase transitions. As
we discuss in greater detail below, the three clusters have
slightly different momentum space representations, result-
ing in the second and third transitions to occur at slightly
different values of J2=J1 for each cluster.
Another indicator of a phase transition can be seen in the

NN energy E1 (the NNN energy is denoted by E2). In
Fig. 2(b), we show the ratio E1=E (here E is the ground-
state energy) for the 24D cluster. The transition points are
directly connected with the inflection points in E1=E. To
demonstrate this more clearly, we also show the derivative
of E1=E, whose minima coincide with the transitions de-
termined by the fidelity metric.
From the mapping between spins and hard-core bosons,

it follows that the antiferromagnetic and the other two
ordered states correspond to Bose-Einstein condensates
(BECs) in which bosons condense into quantum states
with different momenta. To characterize these phases, we
measure the condensate fraction fc ¼ �1=Nb (Nb is the
total number of bosons) by computing the largest eigen-

value�1 of the one-particle density matrix �ij ¼ hbyi bji. If
fc scales to a nonzero value in the thermodynamic limit,
then the system exhibits Bose-Einstein condensation [26].
This is the case in three of our phases, as depicted in
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FIG. 1 (color online). (a) Phase diagram of the model in
Eq. (1) as a function of J2=J1, (b) antiferromagnetic ordering
(phase I), (c) spin wave ordering with wave vector k ¼ M
(phase III), (d) collinear spin wave ordering with wave
vector k ¼ K (phase IV). The phase boundaries are
ðJ2=J1ÞI!II ¼ 0:210� 0:008, ðJ2=J1ÞII!III ¼ 0:356� 0:009,
and ðJ2=J1ÞIII!IV ¼ 1:320� 0:020.
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FIG. 2 (color online). (a) Fidelity metric vs J2=J1 for clusters
24C, 24D, and 24E. (b) Ratio of the NN energy to the total
energy E1=E and its derivative (right axis) for the 24D cluster.
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Fig. 3. For the Bose-metal phase, on the other hand, the
condensate fraction vanishes in the thermodynamic limit,
indicating the absence of BEC.

To further examine the properties of these phases, we
calculate the single-particle occupation at different mo-
mentum points

nðkÞ ¼ h�y
k�ki þ h�y

k�ki: (3)

Here, �k and �k are boson annihilation operators at mo-
mentum k for the A and B sublattices. Because we are
studying finite-sized clusters, we utilize twisted boundary
conditions [27] and average over 40� 40 boundary con-
ditions to fully probe the Brillouin zone.

In Fig. 4, we show the momentum distribution function
as a function of k for select values of J2=J1 that are
representative of each phase. In the first phase [Fig. 4(a)],
the momentum distribution function is sharply peaked
at k ¼ �, indicating an antiferromagnetically ordered

state. The third and fourth phases [Figs. 4(e) and 4(f),
respectively] also exhibit sharp peaks in nðkÞ, but
this time at the edges of the Brillouin zone. For phase III
[Fig. 4(e)], nðkÞ is maximal at k ¼ M, corresponding to
the collinear spin wave state illustrated in Fig. 1(c). For
phase IV [Fig. 4(f)], nðkÞ is maximal at k ¼ K, as one
would expect for a 120� ordered phase [Fig. 1(d)].
The momentum distribution function in the Bose metal

is depicted in Figs. 4(b)–4(d) for three different values of
J2=J1. One can see there that nðkÞ in this phase exhibits a
remarkable J2=J1-dependent Bose surface. Namely, the
magnitude of the Bosewave vector kB at which the maxima
of nðkÞ occurs changes (increases) with increasing J2=J1.
The important distinction to be made here is that those
maxima do not reflect Bose-Einstein condensation; i.e.,
they do not scale with the system size as the ones in the
other three phases do.
We should add that, in order to exclude other ordering

tendencies in phase II, we also examined the Sz correlation
function Ci;j ¼ hðSzia � SzibÞðSzja � SzjbÞi and the dimer-

dimer correlation function Dij;k‘ ¼ hðSi � SjÞðSk � S‘Þi
and their corresponding structure factors. Finite-size scal-
ing of these structure factors (not shown) made evident that
neither charge density wave formation nor dimer formation
occurs. We also computed the excitation gap in the Bose-
metal phase and found it to be much smaller than the
(finite-size) excitation gap in the antiferromagnetic state.
In the antiferromagnetic phase, the system is gapless in the
thermodynamic limit, due to the spontaneous breaking of
the spin-rotation symmetry and the resulting Goldstone
modes. Since the gap in the Bose-metal phase is signifi-
cantly smaller, we believe this gap is also due to finite-size
effects and will close in thermodynamic limit. Our
small system sizes prevent us from reaching conclusive
results for this quantity after a finite-size extrapolation.
Nevertheless, all the phenomena we observed in this phase
are consistent with and indicate a Bose-metal phase.
In Fig. 5, we illustrate how both the momentum distri-

bution function and the largest eigenvalue of h�y
i �j þ

�y
i �ji, �1, evolve over the entire parameter space for

two different 24-site clusters with periodic boundary con-
ditions. The maximum of nðkÞ perfectly matches �1, and it
is clear that the momenta of the condensates in phases I, III,
and IV are k ¼ �, M, and K, respectively. In addition, it
can be seen that the momentum distribution in phase II
exhibits a peak inside the Brillouin zone that shifts to larger
momenta as J2=J1 is increased.
Phases III and IVexhibit an interesting phenomenon that

can be unveiled by examining the degeneracy of the largest
eigenvalues of the one-particle density matrix. In an ordi-
nary BEC state, condensation occurs to a unique effective
single-particle state, and thus the largest eigenvalue of the
density matrix is nondegenerate and OðNbÞ, while the
second largest eigenvalue is already Oð1Þ. This is what
we find in the antiferromagnetic state (phase I). However,
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FIG. 3 (color online). Finite-size scaling of the condensate
fraction fc for parameters that are representative of each phase
depicted in Fig. 1 (J2=J1 ¼ 0:00; 0:30; 0:80;1). The color of
each curve is consistent with the color coding in Fig. 1. In the
limit L ! 1, the condensate fraction is nonzero in the antifer-
romagnetic, spin wave, and 120� ordered phases.

FIG. 4 (color online). nðkÞ vs k for (a) the Néel state (J2=J1 ¼
0), (b)–(d) Bose metal (J2=J1 ¼ 0:27, 0.30, and 0.32),
(e) collinear spin wave (J2=J1 ¼ 0:80), and (f) the 120� ordered
state (J2=J1 ¼ 1). In (b)–(d), the Bose surface is indicated by
the dashed red line and has a radius of magnitude kB ¼ 0:9, 1.0,
and 1.4, respectively. Each plot contains 19 600 k points.
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in general, condensation can occur to more than one
effective one-particle state [28,29], and various largest
eigenvalues of the one-particle density matrix may become
OðNbÞ and degenerate. This fragmentation occurs in
phases III and IV. For phase IV, it is trivial to realize that
the condensate must be degenerate in the limit J2=J1 ! 1,
where the system consists of two disconnected triangular
lattices. Interestingly, in this model, fragmentation occurs
for all values of J2=J1 in phases III and IV, and is related to
the number of M or K points present in the clusters under
consideration.

In summary, we have studied a frustrated XY model on a
honeycomb lattice. We find that this model exhibits four
phases [see phase diagram in Fig. 1(a)]: (I) a BEC at k ¼ �
(antiferromagnetism), (II) a Bose metal (spin liquid), (III) a
BEC at k ¼ M (a collinear spin wave), and (IV) a BEC at
k ¼ K (120� order). The Bose-metal phase is character-
ized by a parameter dependent peak in nðkÞ and a lack of
condensation, solid order, and dimer order. This work
provides the first convincing example of a gapless spin
liquid in a surprisingly simple model of XY spins. We
believe that there is no fundamental challenge to realize
the Bose-metal phase in experimental systems dealing with
spins or ultracold optically trapped bosons in the regime of
large on-site Hubbard repulsion. Finally, recent experimen-
tal [30] and theoretical [31–34] work suggest that exotic
quantum spin liquids might exist in related lattice models
for SUð2Þ spins. It would be interesting to see what rela-
tionship, if any, exists between these possible SUð2Þ spin
liquids and our Bose metal, which can be studied by
introducing interaction terms for the bosons.
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