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The emergence of local phases in a trapped two-component Fermi gas in an optical lattice is studied

using quantum Monte Carlo simulations. We treat temperatures that are comparable to or lower than those

presently achievable in experiments and large enough systems that both magnetic and paired phases can

be detected by inspection of the behavior of suitable short-range correlations. We use the latter to suggest

the interaction strength and temperature range at which experimental observation of incipient magnetism

and d-wave pairing are more likely and evaluate the relation between entropy and temperature in two-

dimensional confined fermionic systems.
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Strong electron correlations in solids are believed to
be at the origin of a remarkable host of phenomena that
range from anomalous insulating states and magnetism
to high temperature superconductivity [1]. The Hubbard
Hamiltonian [2], a model which provides a simplified
picture of the band structure and electron interactions,
is thought to contain the necessary ingredients to describe
such spectacular diversity. In the strongly interacting
limit the half filled model describes a Mott insulator,
and, on a two-dimensional (2D) square lattice, quantum
Monte Carlo simulations [3,4] have convincingly estab-
lished the existence of antiferromagnetism at T ¼ 0. This
conjunction of insulating behavior and long-range antifer-
romagnetic order accurately describes the low-temperature
physics of the undoped parent compounds of the cuprate
superconductors.

Despite intensive analytical and computational work,
what happens as one dopes the antiferromagnet has
remained controversial and many important questions re-
main unanswered [5–7]. A promising new route to study
the model has recently emerged in the form of experiments
with fermionic gases in optical lattices. The appeal of
these experiments lies in the high degree of control over
the different parameters of the system and the ensuing
possibility of a close realization of a ‘‘pure’’ Hubbard
Hamiltonian [8], free of the complexity characterizing
solid state systems. Groundbreaking achievements include
loading an ideal quantum degenerate Fermi gas in a three-
dimensional (3D) lattice [9] and the realization of the Mott
metal-insulator transition in 3D [10,11].

Optical lattice experiments require the presence of a
confining potential, usually harmonic, and are accordingly
modeled by the Hamiltonian

H ¼ �t
X

hiji;�
ðcyj�ci� þ H:c:Þ þX

i

ðVini þUni"ni#Þ; (1)

with Vi � Vr2i . The curvature V causes the density to vary
across the lattice, resulting in a situation at odds with the
homogeneous system that one would like to emulate. This
is a potential problem because numerical studies on related
models [12] have indicated the existence of many compet-
ing phases with vastly different physical properties.
Understanding the extent to which the delicate balance
between these phases is affected by the presence of the
trap is, therefore, of importance for assessing whether
fermionic gases can be taken as accurate simulators of
homogeneous models. Thanks to improvements in quan-
tum Monte Carlo (QMC) codes [4,13–16], this and other
issues can now be quantitatively investigated at tempera-
tures that are comparable to or below those of the latest
optical lattice experiments [10,11].
Here we report results from state-of-the-art determi-

nant QMC (DQMC) simulations [17] of the trapped 2D
Fermi-Hubbard Hamiltonian. We found clear signatures
of magnetic and pairing correlations at temperatures of
the order of the magnetic scale J ¼ 4t2=U, a perhaps
surprising observation considering that the corresponding
temperature range in strongly correlated solid state
systems is well above Tc. We note, however, that the
properties that we compute are local in character,
and that recent advances in optical lattice experiments
[18–20] have made possible the imaging of individual
sites and short-range correlations around them. Hence,
our results suggest that the purity of optical lattices and
the novel probes used in these experiments could allow
the observation of local pairing signatures at higher
temperatures than possible in a condensed matter
environment.
We analyze the properties of the trapped system in

terms of the spatial dependence of the local density
nðiÞ ¼ hnii, the density fluctuations �ðiÞ ¼ hn2i i � hnii2,
and the spin correlations CxyðiÞ ¼ 4hSziþðx;yÞS

z
i i. Pairing is
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analogously discussed by defining a local d-wave pair
creation operator,

�dy
i ¼ 1

2
ð�y

i;iþx̂ þ �y
i;i�x̂ � �y

i;iþŷ � �y
i;i�ŷÞ;

with �y
ij ¼

1ffiffiffi
2

p ðcyi"cyj# þ cyj"c
y
i#Þ; (2)

and a corresponding correlation function PxyðiÞ ¼
h�d

iþðx;yÞ�
dy
i i. To isolate the effect of the pairing vertex

[21], we focus on the connected correlation function in
which suitable products of single particle propagators are
subtracted from Pxy.

In Fig. 1, we examine the spatial dependence of different
properties at U ¼ 6t, V ¼ 0:04t, and T ¼ 0:31t for a
system of 560 fermions. In this parameter regime, the
average sign in DQMC simulations is 0.3 and decreases
exponentially as T is lowered. T ¼ 0:31t is therefore very
close to the bound that the sign problem [22,23] imposes
on the lowest achievable temperature. Despite this restric-
tion, the emergence of a Mott insulator is clearly visible
and depicted in Fig. 1(a), which shows a density plateau
region of commensurate filling, nðiÞ ’ 1, and in Fig. 1(b)
through the formation of a pronounced minimum in the
density fluctuations. This domain is also distinguished by
enhanced antiferromagnetism [Fig. 1(c)] and d-wave pair-
ing [Fig. 1(d)]. These last two properties are represented
by the local order parameters

MðiÞ ¼ X

x;y

ð�1ÞxiþyiþxþyCxyðiÞ; �ðiÞ ¼ X

x;y

PxyðiÞ;

which are expected to diverge if long-range order develops
around site i.

Given that the temperature T ¼ 0:31t is of the order of
the antiferromagnetic exchange J, the sharp signal in MðiÞ
is clearly due to the formation (and partial ordering) of
local moments in the Mott domain. The appearance of the
peak in �ðiÞ in the same region is, however, surprising—
one would expect the peak to occur away from the insulat-
ing phase. This shows that MðiÞ or �ðiÞ can be accurate
indicators of the appearance of local phases only at
temperatures sufficiently low that the order parameter is
dominated by long-range contributions. As Fig. 1(d) dem-
onstrates, this is not the case in our simulations nor in
current experiments. However, we shall argue that the
temperature and interaction dependence of spin and pairing
correlations, when examined at distances which are sensi-
tive to the appropriate energy scales, can provide compel-
ling evidence of incipient order [24].
Using this argument, we proceed to determine the tem-

perature and entropy scale that experimentalists need to
achieve in trapped 2D lattices in order to observe the onset
of antiferromagnetic and pairing correlations. Note that a
related analysis has been recently carried out for the en-
tropy scale of the half filled homogeneous model [25].
As the temperature is lowered from T ¼ 1:14t to T ¼

0:31t (U ¼ 6t), the density distribution [Fig. 2(a)] is
slightly compressed, the entropy per particle S [shown in
Fig. 2(a) inset] decreases monotonically, and there is a
marked increase in the total double occupancy in the
system D [see inset in Fig. 2(b)], which is generated by
the increase of the double occupancy at the trap center. We
determine the entropy, S ¼ �ðhEi � FÞ, by first computing
the Helmholtz free energy using constant-temperature
coupling-constant integration over an identical set of traps
containing approximately 560 fermions and increasing U
[24]. The Mott insulating region nðiÞ ’ 1 is characterized
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FIG. 1 (color online). (a) Local density nðiÞ, (b) density fluc-
tuations �ðiÞ, (c) local staggered magnetization MðiÞ, and
(d) d-wave pairing �ðiÞ are shown for U ¼ 6t, T ¼ 0:31t, �0 ¼
3:0t, and V ¼ 0:04t. A Mott insulating domain is emerging in
the density profile of (a), in the form of a half filled ring 6–10
lattice spacings from the trap center. The density fluctuations are
minimized in this region. The staggered magnetization and the
d-wave pairing, however, show a pronounced maximum in the
Mott domain.
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FIG. 2 (color online). Temperature dependence of the
(a) density, (b) density fluctuations, (c) nearest-neighbor spin
correlations C10ðiÞ, and (d) next-nearest-neighbor d-wave pair-
ing P11ðiÞ for U ¼ 6t. Lines are results within the local density
approximation. The insets of (a) and (b) show the temperature
dependence of the entropy and the double occupancy normalized
to the number of particles, respectively, while the insets of (c)
and (d) are the averages over the lattice of the local staggered
magnetization and d-wave pairing.
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by a deepening of the minimum in the density fluctuations
�ðiÞ [Fig. 2(b)] and by a threefold increase in the nearest-
neighbor spin-spin correlation C10ðiÞ [Fig. 2(c)]. As the
latter may be the easiest way to observe the onset of
antiferromagnetic correlations in experiments, Fig. 2(c)
makes clear that, although a weak signal may be visible
at the highest T, a clear maximum in the Mott domain will
only be apparent when T < t.

When analyzing pairing correlations it is important to
realize that P00ðiÞ and P10ðiÞ contain large contributions
from C10ðiÞ and, consequently, carry little information on
the actual pairing amplitude in the vicinity of a given site.
This is analogous to the more familiar statement that local
moment formation cannot be taken as indication of short-
range magnetic order. P11ðiÞ [Fig. 2(d)] is therefore the
shortest-distance correlation that can be used to gain in-
sights on the development of off-diagonal order; it is
characterized by two maxima around the Mott region,
sharply peaked at densities (n ¼ 0:8 and n ¼ 1:2) that lie
in the center of the superconducting dome of the cuprate
phase diagrams [26]. The analogous correlation for pairs in
an extended s-wave state (see [24]) is also significantly
enhanced in a broad ring around n ¼ 0:6. Although the
local character of P11 and the high temperature do not
allow a characterization of the dominant low-temperature
pairing symmetry, our results suggest that d-wave and
extended s-wave pairing may be detected as leading pair-
ing symmetries in spatially distinct regions, in agreement
with existing ground state calculations on related homo-
geneous models [27,28].

Another important piece of information that will help
experimentalists observe antiferromagnetism and pairing
is the optimal value of the ratio U=t at which those corre-
lations are expected to be maximal. In order to address this
issue, we first investigate the interaction dependence of the
same physical properties represented in Fig. 2 but at con-
stant T ¼ 0:5t (Fig. 3), and then show that our conclusions
are unaltered if it is S to be held constant.

At intermediate coupling (U ¼ 4t), the smallness of the
gap, the curvature of the trapping potential, and thermal
fluctuations make it impossible for a flattening in the den-
sity profile to appear. Note, however, that signals of incipi-
ent insulating behavior are clear in the structure of density
fluctuations [Fig. 3(b)]. At large interaction strength (U ¼
10t; 12t), the existence of a Mott insulating domain can be
directly inferred by inspection of the density profile: the
large central plateau comprising about 300 sites is indica-
tive of a phase with vanishing compressibility. Nearest-
neighbor spin correlations acquire their largest value at
U ¼ 8t. While the double occupancy is monotonically
suppressed as U increases, the staggered magnetization
shows a similar behavior to C10ðiÞ, reaching a maximum
when U is of the order of the bandwidth. It is therefore -
clear that the optimal interaction strength must be near the
bandwidth and that future experiments should focus their
attention on this regime. Similarly, P11ðiÞ exhibits a sharp
maximum at nðiÞ ¼ 0:8 for U ’ 8t, but contrary to what is
observed forC10ðiÞ, there is noweakening when going from
U ¼ 8t to U ¼ 12t and no dependence of the ‘‘optimal’’
density for pairing on U. The latter is reminiscent of the
properties of cuprate superconductors where optimal dop-
ing is constant across the entire family of these materials.
One might wonder what would happen in the experi-

mentally relevant case of a (quasi)adiabatic evolution, i.e.,
a system at constant entropy, as a function ofU. In the inset
of Fig. 3(a), we show the evolution of the entropy per
particle as a function of the interaction strength for various
fixed temperatures. AsU is increased at constant S, we find
that the system cools down and goes, for instance, from
T ¼ 0:5t at U ¼ 2t to T ¼ 0:31t at U ¼ 10t, while S is
held fixed at 0.5. Since this cooling is mild beyondU ¼ 8t,
isothermal and adiabatic evolution in this parameter re-
gime are essentially equivalent. For U < 8t, an adiabatic
increase of U is accompanied by progressively lower tem-
peratures, and this, in turn, implies thatU ¼ 8t remains the
optimal interaction strength to observe strong-correlation
phenomena.
We finally touch on the extent to which properties in a

trap are a faithful representation of those in a homogeneous
system. To this aim we use DQMC simulations on homo-
geneous 8� 8 clusters to estimate local properties as a
function of chemical potential and plot the corresponding
local density approximation (LDA) results in Figs. 2 and 3
as continuous lines. The agreement with the ab initio
results is excellent with the sole exception of the half filled
region at T ¼ 0:31t [Fig. 2(c)]. This discrepancy is a
characteristic failure of the LDAwhen applied to the inter-
face between coexisting phases [29].
A more dramatic failure of the LDA is expected when

examining longer-range correlations. Since in the fermionic
Hubbard model the development of a certain type of order
corresponds with a rather narrow density interval, different
phases in a trap appear with a narrow-ring-like topology.
If one disregards interfacial effects, these regions can be
thought of as one-dimensional homogeneous strips where
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FIG. 3 (color online). Same quantities of Fig. 2 but as a
function of interaction strength U=t at constant T ¼ 0:50t. The
inset of (a) shows the entropy for temperatures T=t ¼ 0:67, 0.57,
0.50, 0.44, 0.40, 0.36, 0.33, and 0.31 (top to bottom).
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the long-range character of correlations is determined by
the strip width. An example of such a situation is given
by the development of long-range magnetic order in the
half filled annulus found in our simulations at U ¼ 6t. In
particular, Fig. 4 shows that 2D correlations, computed on a
half filled homogeneous cluster at the same temperature,
represent a good approximation to the correlations in a trap
only at short distances, overestimating the correct long-
range value. Analogous results for a 1D chain fail at all
distances and, in particular, decay too quickly at large
separation. This behavior is generic and expected for the
superfluid regions as well. When the system size increases,
these quasi-1D regions grow both in width and length and
their correlations ultimately cross over to a pure 2D char-
acter. This dimensionality effect must be taken into account
when using finite size systems to infer the critical behavior.

In summary, we have addressed finite temperature prop-
erties of inhomogeneous Fermi-Hubbard systems using an
ab initio approach. Our findings of enhanced antiferromag-
netic and pairing correlations just below the temperature
scale T � t thus open important perspectives for current
experiments with ultracold fermions in optical lattices.
While the lowest temperatures reported here are well above
the d-wave coherence temperature, the enhanced signal in
local properties is a promising sign: these results and the
purity of the experimental optical lattice suggest that, in
contrast to solid state systems, temperatures of the order of
the hopping scale may be enough to observe clear local
signature of bothmagnetic and pairing correlations. Tuning
experiments to be in the regime where the on site interac-
tions are of the order the bandwidth (U� 8t) provides the
sharpest signal of the many-body effects. Our computation
of the entropy S indicates that adiabatic cooling occurs in
the 2D Hubbard Hamiltonian with a position dependent
(confining) potential as the interaction strength U is in-
creased via, e.g., a Feshbach resonance. This allows our

conclusions concerning the observability of spin and pair-
ing order to be relevant to experiments at constant entropy.
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FIG. 4 (color online). Spin correlations CxyðiÞ [for fixed site i
and variable separation (x; y)] along the path illustrated in
inset (a) around the trap center. Inset (b) is an enlarged view
of the longer correlations. CxyðiÞ exhibits the alternating sign

characteristic of antiferromagnetism. The correlations decrease
rapidly, but nevertheless extend out to several lattice spacings.
The spin correlations are also shown in the LDA approximation
for d ¼ 1 and d ¼ 2.
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