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The recent proposal of Romero-Isart et al. [Phys. Rev. Lett. 111, 145304 (2013)] to utilize the vortex lattice
phases of superconducting materials to prepare a lattice for ultracold-atom-based quantum emulators raises the
need to create and control vortex lattices of different symmetries. Here we propose a mechanism by which
honeycomb, hexagonal, square, and kagome vortex lattices could be created in superconducting systems with
multiscale intervortex interactions. Multiple scales of the intervortex interaction can be created and controlled in
layered systems made of different superconducting materials or with differing interlayer spacings.
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To circumvent the limitations on classical computation,
a growing effort to manipulate and control the behavior of
ultracold atomic gases has led to these systems being used
as quantum simulators for a host of phenomena in condensed
matter physics [1,2]. A focus of quantum simulator investiga-
tions has been on building Hubbard models by loading a gas
of neutral atoms into optical lattices and tuning the interaction
between the atoms [3,4]. At present, great strides have been
made in cooling protocols [5–7], but the main question, to
assess in such experiments whether the Hubbard model can
explain high-Tc superconductivity, remains unanswered.

In order to address this question, better cooling schemes
which reduce the entropy of the quantum simulator are neces-
sary [4]. Very recently, Romero-Isart et al. [8] proposed placing
ultracold atoms in a lattice potential generated by a magnetic
field of superconducting vortices in type-2 superconductors
and trapping the atoms near the surface. This new approach
aims to decrease the interlattice site distance, making the
required regimes experimentally feasible [8,9]. This possibility
of a crucially important application raises the need to create
and control vortex lattices of different symmetries. Although
in some exotic cases a square vortex lattice has been observed
[10,11], the overwhelming majority of vortex lattices in
superconductors have hexagonal symmetry. In order to create
a vortex lattice of various symmetries for quantum emulators,
Romero-Isart et al. [8] proposed pinning the vortices in arrays
of etched holes or antidots [12]. While such vortex systems
have been extensively investigated in superconductivity both
theoretically and experimentally for various pinning array
geometries [13–22], Romero-Isart et al. [8] note that the
anticipated challenges to implementing the approach are high
requirements for perfection of the vortex lattice and possible
variations and field inhomogeneities in the antidot arrays. In
fact, the interest in self-assembly of kagome and honeycomb
structures goes beyond the recent interest in vortex matter
and is intensively studied in soft condensed matter systems
[23–26].

Here we propose an alternative approach involving multi-
component superconducting systems. Recently there has been
interest in superconductivity with several scales of repulsive
and attractive interaction. In two-band superconductors it

is possible to have a vortex system where the short-range
interactions are repulsive while the long-range interactions
are attractive in regimes where one coherence length is shorter
than the magnetic field penetration length while the second
coherence length is larger, i.e., ξ1 < λ < ξ2 [27–30]. The
regime was recently termed type-1.5 superconductivity in
experimental works on MgB2 [31–33] and Sr2RuO4 [34,35].
The nonmonotonic intervortex interaction is also possible in
electromagnetically or proximity-effect coupled bilayers [27].

In the two-band superconductor the long-range intervortex
interaction energy is given by [27,28,36]
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The first term describes intervortex repulsion which comes
from magnetic and current-current interaction. The second and
third terms describe attractive interactions from core overlaps.
The two contributions are due to to coherence lengths.

In Ref. [37] it was proposed that in layered systems multiple
repulsive length scales are possible when different layers have
different λi . For a straight and rigid vortex line, the long-range
interaction is then
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Such a system can have various cluster phases due to multiscale
repulsive interactions [37]. Subsequently some of the phases
obtained in simulations where the vortices are treated as a point
particle [37] were also obtained in simulations of a layered
Ginzburg-Landau model [38].

Here we point out that layered systems proposed in
Ref. [37], i.e., structures made of a combination of type-1
and type-2 superconductors with variable interlayer distances
(see Fig. 1), could be used to create vortex lattice of different
symmetries. In what follows, we utilize Langevin dynamics
to study various states of vortex matter in superconductors
[39–42]. Often in systems with multiple repulsive length
scales, various phases are quite robust with respect to potential
changes as long as the potential preserves the distinct repulsive
length scales [43,44]. Thus we use a phenomenological
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FIG. 1. (Color online) Schematic picture of the magnetic field
lines of a vortex in a layered superconductor. Shaded (white) areas
are superconductor (insulator) layers with different thicknesses. The
flux spreads in the nonsuperconducting regions.

pairwise potential with multiple length scales which has
characteristic features of the analytically known asymptotic
form Eq. (2) as well as the included effect of a demagnetization
field in the form of an analytically known long-range power-
law repulsive intervortex force [45]. We demonstrate that
layered systems where such a potential can be realized can be
used to generate the four two-dimensional lattices: hexagonal,
honeycomb, square, and kagome.
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FIG. 2. (Color online) Phenomenological potential that de-
scribes the multiscale intervortex interaction for straight rigid vortex
lines in a layered system with different layer parameters. The solid
red curve gives rise to a honeycomb lattice at density [46] ρ = 1.50, a
hexagonal lattice at ρ = 2.25, and a square lattice at ρ = 2.50, while
for the dashed green line a kagome lattice is the ground state at a
density of ρ = 2.50 [47].

5λ

(a)

5λ

(b)

5λ

(c)

5λ

(d)

FIG. 3. The final vortex configuration at zero temperature for
(a) Nv = 3024 and ρ = 1.50 (honeycomb lattice), (b) Nv = 2958 and
ρ = 2.25 (hexagonal lattice), (c) Nv = 2958 and ρ = 2.50 (square
lattice), and (d) Nv = 1020 and ρ = 2.50 (kagome lattice). (a)–(c)
correspond to the solid red curve of Fig. 2, while (d) corresponds to
the dashed green curve.

In Fig. 2, we illustrate two potentials that arise from a
phenomenological form

Eint = c1e
−r/λ − c2e

−r/ξ + c3
λ{tanh[α(r − β)] + 1}

r + δ
(3)

that captures the essential multiscale features of the intervortex
forces in a layered superconducting structure [37,47], when
the interaction can be approximated by pairwise forces
between straight vortex lines. The model features a short-
range exponential repulsion, intermediate-ranged exponential
attraction, and a long-range power-law repulsive behavior. The
interplay between these different interactions results in a rich
phase diagram which goes beyond the scope of this Rapid
Communication; we defer a full discussion of its properties
for future work [48].

In Fig. 3, we illustrate some of the ground state vortex
phases of the potentials shown in Fig. 2. The phases were
obtained using Langevin dynamics [40] simulations of Nv ≈
1000–3000 vortices where the temperature was slowly reduced
to T = 0 (see Refs. [37] and [48] for additional details). For
the solid red line of Fig. 2, we obtain honeycomb, hexagonal,
and square lattices at densities [46] ρ = 1.50, 2.25, and
2.50, respectively. For the dashed green curve, we obtain
a perfect kagome lattice for ρ = 2.50. For the honeycomb,
hexagonal, and square lattice results, we find little to no
defects for the largest system sizes studied. For the kagome
lattice results, we achieve a defect-free lattice for 1020 vortices
but observe a kagome lattice with defects for 2958 vortices,
which may be a consequence of the simulated annealing rate.
All simulations were initialized with random configurations
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FIG. 4. (Color online) Comparison of the radial distribution
function g(r) of the vortex configurations shown in Fig. 3 with those
of the ideal geometry for (a) honeycomb, (b) hexagonal, (c) square,
and (d) kagome lattices. The dashed blue line is the zero temperature
result after simulated annealing, and the solid red line is the ideal
result.

and later compared with a perfect lattice. In the case of
the honeycomb and kagome lattice results, we observed a
polycrystalline state which had higher energy than the perfect
lattice. To ensure that the perfect lattice was the correct
ground state, we prepared simulations with the ground state
configuration at high temperature and repeated the simulated
annealing protocol, ending up with a final configuration lower
in energy than the defect-filled case (see Fig. 3(a) and 3(d) for
lowest energy configurations).

In order to characterize the degree of perfection for each
phase, we first consider the radial distribution function (RDF),

g(r) = 1

2πr	rρNv

Nv∑
i=1

ni(r,	r), (4)

where ni(r,	r) is the number of particles in the shell
surrounding the ith particle with radius r and thickness 	r .
For phases that form regular lattice structures, we can offer a
direct comparison with an ideal lattice, which we illustrate in
Fig. 4.

From g(r) we can define the ith nearest neighbor (coordi-
nation numbers) as

ni = 2πρ

∫ ri

ri−1

g(r)dr, (5)

where ri−1 and ri are the minima surrounding the ith peak in
g(r). In Fig. 5, we show the coordination number up to the
fifth nearest neighbor for each of the lattices shown above.
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FIG. 5. (Color online) Number of nearest neighbors ni up to the
fifth nearest neighbor for the (a) honeycomb (b) hexagonal, (c) square,
and (d) kagome lattices of Fig. 3 with Nv ≈ 1000 (squares) and 3000
(circles) vortices. Here, ni is normalized to the number of neighbors
in a perfect lattice.

Next, we define the degree of perfection d = 1
Nv

∑
dj for

a lattice as

dj = 1

n1

∣∣∣∣∣
n1∑

i=1

(
1 − 	θ

θperfect

)∣∣∣∣∣ , 	θ = |θi − θperfect|, (6)

where dj is the degree of perfection for the j th vortex, n1

is the number of the nearest neighbors (i.e., the number of
the vortices within a circle of radius rc with the j th vortex
at its center, where rc is the first minimum of the RDF), θi

is the angle between the two nearest neighbors, and θperfect

is the angle between the two nearest neighbors in the perfect
lattice. Note that, by definition, d = 1 if there are no defects in
the lattice. For the square, hexagonal, and honeycomb lattices
θperfect = π/2, π/3, and 2π/3, respectively, while the kagome
lattice has two possible angles, π/3 and 2π/3.

For the honeycomb lattice [Figs. 3(a), 4(a), and 5(a)],
we find that the ordering of the vortices matches the ideal
result very well, with the degree of perfection d ≈ 1 for all
simulations of Nv = 1008 and 3024 vortices. The peaks of the
radial distribution function closely match the ideal case, with
broadening of the peaks due to defects that increases as the
separation between the vortices increases. The coordination
number is within 1% for all results.

For the hexagonal lattice [Figs. 3(b), 4(b), and 5(b)], the
ordering is nearly perfect, with d ≈ 1 and a radial distribution
function featuring nearly delta function peaks that match with
the ideal result. The coordination number calculation also
remains within 1% of the ideal result up to n5 for simulations
of Nv = 2958 and for all coordination numbers we calculated
for simulations of Nv = 986 vortices.

For the square lattice [Figs. 3(c), 4(c), and 5(c)], the
ordering is extremely good, with d = 0.990 and 0.989 for
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Nv = 986 and 2958 vortices, respectively. The radial dis-
tribution function features delta function peaks for the first
eight peaks before broadening begins to occur. In addition, the
number of nearest neighbors calculated is within 1% of the
ideal result for the first five neighbors.

For the kagome lattice [Figs. 3(d), 4(d), and 5(d)], the
ordering is also very good, with d = 0.999 and 0.946 for
Nv = 1020 and 2958, respectively. The radial distribution
function of the simulation result matches the perfect kagome
lattice peaks very well. The coordination numbers are within
1% for both Nv = 1020 and 2958 vortices.

In summary, the recent proposal [8] of realizing quantum
emulators by trapping ultracold atoms in the magnetic field
of superconducting vortex lattice raises the need to develop
methods to create vortex lattices of various symmetries. Here
we propose layered systems where the vortex interaction is
multiscale (in particular, the type-1.5 systems) as the systems
where, in principle, various vortex lattice symmetries can be

realized. The upper layer may, in particular, be used to tune
localization of the field while lower layers and interlayer
distances are used to control lattice symmetry. Different
temperature dependencies of components in different layers
can also be used to manipulate the vortex lattice by controlling
the temperature. We support that proposal by simulation
of point-particle objects with phenomenological two-body
forces similar to long-range forces between straight and rigid
vortex lines. Next we plan to investigate it in the layered
Ginzburg-Landau model, which also include the effects of
vortex bending and nonpairwise intervortex forces (which can
be especially important in type-1.5 regimes [36]).

This work was supported by the National Science Foun-
dation under the CAREER Award No. DMR-0955902, the
Knut and Alice Wallenberg Foundation through a Royal
Swedish Academy of Sciences Fellowship, and by the Swedish
Research Council.
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