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Abstract. Using exact diagonalization calculations, we investigate the ground-
state phase diagram of the hard-core Bose–Hubbard–Haldane model on the
honeycomb lattice. This allows us to probe the stability of the Bose-metal phase
proposed in Varney et al (2011 Phys. Rev. Lett. 107 077201), against various
changes in the originally studied Hamiltonian.
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1. Introduction

In nature we are surrounded with examples of ordered phases at low temperatures—e.g.
crystalline solid structures, magnetically ordered materials, superfluid and superconducting
states, etc. While it is straightforward to think of these ordered phases melting as the temperature
is increased into the familiar classical liquid or gaseous states that are commonplace in every
aspect of our lives, it has been a long-standing question as to whether ‘quantum melting’ at zero
temperature can act similarly to thermal effects and prevent ordering. For a quantum spin or
boson system, the resulting state of matter is known as a quantum spin liquid [1]. The interest
in such a hypothetical spin liquid has remained strong for decades, most prominently due to the
discovery of high temperature superconductivity [2, 3].

Of critical importance is whether a two (or higher)-dimensional system can host a
quantum spin liquid. At present, there exists a complete classification of quantum orders [4],
which divides hypothetical spin liquids into several distinct classes. Some theoretical stability
arguments have also been presented showing that there is no fundamental obstacle to the
existence of quantum spin liquids [5]. Gapped spin liquid phases have been observed in dimer
models [6–8], and also a family of special exactly-solvable toy models were discovered which
can support gapped and gapless spin liquid phases [9]. Although these discoveries clearly
demonstrated that a spin-liquid phase may appear in two (or higher) dimensions, at least in
toy models, whether the same type of exotic phase can appear in a realistic spin system remains
unclear.

Very recently, there has been much numerical [10–17] and experimental [18–20] evidence
to suggest the existence of gapped spin liquids in models with SU(2) symmetry, but it is
still unclear why these simple models can support such exotic phases. Of particular note are
the numerical discoveries of a gapped spin liquid in the Heisenberg model on the kagomé
lattice [11] and in the Hubbard model on a honeycomb lattice [10]. The existence of the latter
is especially surprising and remains under debate [21]. The nature of this phase has been the
subject of many works and it has been argued that next-nearest-neighbor exchange coupling
is the mechanism responsible for the quantum spin liquid [13, 14, 22, 23]. However, despite a
number of numerical investigations into this J1–J2 model, there are still open debates on whether
the non-magnetic state present in this model is a valence bond solid [24–28] or a quantum spin
liquid [12, 15, 16].
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Gapless spin liquids, which may have low-lying fermionic spinon excitations that strongly
resemble a Fermi-liquid state, have remained more elusive. Because of these excitations and
because spin-1/2 models can be mapped onto hard-core boson models, some of these gapless
spin liquids are often referred to as a Bose metal (BM) or Bose liquid. The hallmark feature of
a BM is the presence of a singularity in momentum space, known as a Bose surface [29–34].
However, unlike a Fermi liquid, where the Fermi wave vector depends solely on the density of
the fermions, the Bose wave vector depends on the control parameters of the Hamiltonian and
can vary continuously at fixed particle density.

In this paper, we follow up on the proposition of such a putative BM phase in a simple
hard-core boson (XY ) model on the honeycomb lattice [34], with an analysis of the stability
of this phase against various changes in the Hamiltonian studied originally. First, we examine
the dependence of the Bose wave vector on a (phase) parameter that makes the model transition
between frustrated and non-frustrated regimes. Next, we show that the phase identified as a BM
is stable to breaking of time-reversal symmetry and is present in the phase diagram of the hard-
core Bose–Hubbard–Haldane (BHH) model, which features (at least) three phase transitions.

The remainder of this paper is structured as follows. In section 2, we define the model
Hamiltonian, briefly discuss the Lanczos algorithm, and define the key observables used in this
study: the charge-density wave (CDW) structure factor, the ground-state fidelity metric and the
condensate fraction. Next, in section 3, we discuss the identifying characteristics of the BM
phase in the context of the hard-core boson (XY ) model and show how the Bose wave vector
evolves as the parameters are varied. In section 4, we discuss the three phase transitions that
we can identify in the BHH model: Bose–Einstein condensate (BEC)–CDW, BEC–BM and BM
(other phase)–CDW. The main results are summarized in section 5.

2. Model and methods

2.1. Models

The model proposed in [34] to exhibit a BM phase is the spin-1/2 frustrated antiferromagnetic-
XY model on the honeycomb lattice

H = J1

∑
〈i j〉

(S+
i S−

j + H.c.) + J2

∑
〈〈i j〉〉

(S+
i S−

j + H.c.), (1)

where S±

i is an operator that flips a spin on site i and J1 (J2) is the nearest-neighbor (next-
nearest-neighbor) spin exchange. In this model, the next-nearest-neighbor coupling introduces
frustration as long as J2 > 0 (antiferromagnetism).

The Hamiltonian in (1) maps to a hard-core boson model (S+
i → b†

i , S−

i → bi , and Ji → ti )

H = t1

∑
〈i j〉

(
b†

i b j + H.c.
)

+ t2

∑
〈〈i j〉〉

(
b†

i b j + H.c.
)

. (2)

Here b†
i (bi ) is an operator that creates (annihilates) a hard-core boson on site i and t1 (t2) is

the nearest-neighbor (next-nearest-neighbor) hopping amplitude. This Hamiltonian was shown
to feature four phases: a simple BEC (a zero momentum (k = 0) condensate), a BM (a gapless
spin liquid) and two fragmented BEC states. The BM was found to be the ground state of this
model over the parameter range 0.210(8)6 t2/t1 6 0.356(9) [34].
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To better understand the stability of the latter phase, we consider a strongly interacting
variant of the Haldane model [35], the hard-core BHH Hamiltonian [36]

H = t1

∑
〈i j〉

(
b†

i b j + H.c.
)

+ t2

∑
〈〈i j〉〉

(
b†

i b j e
iφi j + H.c.

)
+ V

∑
〈i j〉

ni n j , (3)

which reduces to (2) for φi j = 0 and V = 0. Here, V describes a nearest-neighbor repulsion
and the next-nearest neighbor hopping term has a complex phase φi j = ±φ, which is positive
for particles moving in the counter-clockwise direction around a honeycomb. Note that the
Hamiltonian in (3) can be mapped to a modified X X Z -model (S+

i → b†
i , S−

i → bi , ni →

Sz
i + 1/2, t1 → J1, t2 → J2 and V → Jz)

H = J1

∑
〈i j〉

(
S+

i S−

j + H.c.
)

+ J2

∑
〈〈i j〉〉

(
S+

i S−

j eiφi j + H.c.
)

+ Jz

∑
〈i j〉

(
Sz

i +
1

2

) (
Sz

j +
1

2

)
. (4)

The complex phase φ plays two important roles. Firstly, for φ 6= nπ , time-reversal
symmetry is explicitly broken. Therefore, we can use this control parameter to study the stability
of the BM phase against time-reversal symmetry breaking. Secondly, in the spin language,
as we increase the value of φ from 0 to π , the sign for the next-nearest-neighbor spin–spin
interaction is flipped from positive (φ = 0) to negative (φ = π ), i.e. the next-nearest-neighbor
spin exchange changes from antiferromagnetic to ferromagnetic. Since frustration in this model
originates from the antiferromagnetic next-nearest-neighbor spin exchange, we can use φ to tune
the system from a frustrated (φ = 0) to a non-frustrated (φ = π ) regime, and thus it enables us
to explore the role of frustration in stabilizing the BM phase.

In what follows, t1 = 1 sets our unit of energy, and we fix t2 = 0.3 to focus on transitions
from the phase identified in [34] as a BM phase. This model has two limiting cases: (i) for
V → ∞, the Ising regime, the ground state is a CDW and (ii) for V = 0 and φ = π , the non-
frustrated regime, the ground state is a simple zero-momentum BEC with non-zero superfluid
density.

2.2. Method and measurements

To determine the properties of the ground state of (3), we utilize a variant of the Lanczos
method [37]. This technique provides a simple and unbiased way to determine the exact ground-
state wave function for interacting Hamiltonians. One limitation of the original algorithm
is that the Lanczos vectors may lose orthogonality, resulting in spurious eigenvalues [38].
Orthogonality can be restored through reorthogonalization [39], which requires storing the
Lanczos vectors. The storage needs can then be reduced utilizing a restarting algorithm, and
the most successful techniques are the implicitly restarted [40, 41] and the thick-restart Lanczos
algorithms [42]. These two methods are equivalent for Hermitian eigenvalue problems, and here
we utilize the thick-restart method for its simplicity in implementation.

A generic and unbiased way of determining the location of a quantum phase transition is
related to the ground-state fidelity metric, g [36, 43–46]. The fidelity metric is a dimensionless,
intensive quantity and is defined as

g =
2

N

1 − F(λ, δλ)

(δλ)2
, (5)
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where N is the number of sites and the fidelity F(λ, δλ) is

F(λ, δλ) = 〈90(λ)|90(λ + δλ)〉, (6)

where 〈90(λ)〉 is the ground state of H(λ), and λ is the control parameter of the Hamiltonian.
For strong repulsive interactions, the ground state of the BHH model is a CDW insulator,

where one of the two sublattices is occupied while the other one is empty. This state
spontaneously breaks the sixfold rotational symmetry down to threefold but leaves the lattice
translational symmetry intact. In addition, because of the diagonal character of the order
established, the structure factor that describes this phase is maximal at zero momentum. Thus,
we define the CDW structure factor SCDW as

SCDW =
1

N

∑
i, j

〈(na
i − nb

i )(n
a
j − nb

j)〉, (7)

where na
i and nb

i are the number operators on sublattice a and b in the i th unit cell, respectively.
Another possible ordered state is a BEC, where, in our model, bosons can condense into

quantum states in which different momenta are populated. According to the Penrose–Onsager
criterion [47], the condensate fraction can be computed by diagonalizing the one-particle density
matrix ρi j = 〈b†

i b j〉,

fc = 31/Nb, (8)

where 31 is the largest eigenvalue of ρi j and Nb is the total number of bosons. In a BEC, the
condensate occupation scales with the total number of bosons as the system size is increased,
which is equivalent to stating that ρi j exhibits off-diagonal long-range order [48]. Consequently,
in a simple BEC, 31 ∼ O(Nb) while all other eigenvalues are O(1) [49]. Aside from a simple
BEC, the eigenspectrum of the single-particle density matrix can signal fragmentation, where
condensation occurs to more than one effective one-particle state [49, 50], and the BM phase.
In the former case, some of the largest eigenvalues are O(Nb) and could even be degenerate.
For the BM, however, all of the eigenvalues of ρi j are ∼ O(1). Thus finite-size scaling of fc can
help pinpoint the presence or absence of condensation.

Further understanding of the latter two phases can be gained by calculating the single-
particle occupation at different momentum points

n(k) = 〈α
†
kαk〉 + 〈β

†
kβk〉, (9)

where αk =
∑

i∈A eik·ri b†
i bi and βk =

∑
i∈B eik·ri b†

i bi are boson annihilation operators at
momentum k for the A and B sublattices, respectively. In order to minimize finite-size effects
and fully probe the Brillouin zone we average over 40 × 40 twisted boundary conditions [51, 52]

〈n(k)〉θx ,θy =

∮
dθx

∮
dθy〈n(k, θx , θy)〉, (10)

where θα is the flux associated with the twisted boundary condition.
For any finite-size calculation, there are a large number of clusters that one could study,

each with slightly different symmetry properties. In this work, we focus solely on clusters that
can be described by a parallelogram or ‘tilted rectangle’. The clusters used in this study are
illustrated in figure 1 and are discussed in more detail in [34, 36].
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Figure 1. Clusters used in this study.

3. XY model

In a previous study [34], we reported that the phase diagram of the XY model (1) on a
honeycomb lattice has three quantum phase transitions separating four distinct phases. The four
phases are: (i) a BEC k = 0 (antiferromagnetism), (ii) a BM (spin liquid), (iii) a BEC at k = M
(a collinear spin wave) and (iv) a BEC at k = K (120◦ order).

The key signature of a BM is the absence of any order and a singularity in the momentum
distribution n(k). In figures 2(a) and (b), we show n(k) for two values of t2/t1 that are typical for
the BM phase. For this phase, n(k) features a t2/t1-dependent Bose surface, which, as a guide
to the eye, we indicate by a dashed red line. In general, the Bose wave vector qB at which the
maxima of n(k) occurs increases with increasing t2/t1, as shown in figure 2(c). We emphasize
that the maxima in n(k) do not reflect Bose–Einstein condensation as they do not scale with
system size.

4. Bose–Hubbard–Haldane model

In this work, we present evidence that, in the (φ, V ) plane (see (3)), the BHH model for
t2/t1 = 0.3 exhibits (at least) three phases at half-filling. For strong coupling V , the ground state
is a CDW, while (at least) two possible ground states exist at weak-coupling. In the frustrated
regime (φ ∼ 0) at V = 0, the system favors a BM, while the unfrustrated regime (φ ∼ π )
favors a BEC. Consequently, we find that there are three types of transitions: (i) BEC–CDW,
(ii) BEC–BM and (iii) BM (other phase)–CDW.

Let us first consider the BEC–CDW transition driven by V at constant φ. In figure 3,
we show the properties of the system for φ = π . In panel (a), we show the fidelity metric
versus V , which has a smooth peak that grows with system size, indicative of a second-order
phase transition (which would be unconventional in this case in which the system transitions
between two ordered states) or a weakly first order transition. If the former is true, the structure
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 0.27  0.3  0.33
 0.8

 1

 1.2

 1.4

q B

t2 / t1

(c)

Figure 2. (a), (b) Momentum distribution n(k) versus k8 for the BM phase in the
XY model for t2/t1 = 0.28 and 0.33, respectively. In both panels, 40 × 40 twisted
boundary conditions were averaged to generate n(k), and the Bose surface is
indicated by a dashed red line. (c) The magnitude of the Bose-surface qB as a
function of t2/t1.
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(a)
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24C
24D

0
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L1+
η

f c
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(c)

Figure 3. (a) Fidelity metric g, (b) scaled structure factor L−γ /ν SCDW and
(c) scaled condensate fraction L1+η fc as a function of interaction strength for
various clusters with φ = π .

factor would scale according to the rule

L−γ /ν SCDW = f [(V − Vc)L1/ν], (11)

8 The momentum distribution n(k) illustrated in figures 2, 5 and 7 were calculated for the 24D cluster. All clusters
studied here are depicted in figure 1.
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Figure 4. (a) Fidelity metric g, (b) structure factor SCDW and (c) scaled
condensate fraction L1+η fc as a function of φ for various clusters with V = 0.

where N is the number of sites, L = N 1/2 is the linear dimension and γ = ν(2 − η). Because
of our small lattice sizes, we cannot pinpoint the exact nature of this transition. For example,
using a scaling analysis based on the three-dimensional (3D) Ising [53] and XY universality
classes [54] yield very similar results. In figure 3(b), we show the CDW structure factor scaled
in accordance with the 3D XY universality class, resulting in Vc = 3.71(7).

We can check the robustness of this result by considering the condensate fraction, which
scales [55–57] according to

L y fc = g[(V − Vc)L1/ν], (12)

where y = (d + z − 2 + η). This is illustrated in figure 3(c), resulting in Vc = 3.73(3). This result
is quite close to the one obtained using the structure factor. We stress, once again, that although
this appears to be a second-order transition between two ordered states, finite-size limitations
do not allow us to rule out the possibility of a weak first-order transition or the existence of a
small intermediate phase separating the BEC and CDW states.

Next, we examine the properties of the model as one transitions from the BM to the BEC
state. In figure 4, we show the same quantities as in figure 3 (this time versus φ) for V = 0. The
fidelity metric is plotted in figure 4(a), and peaks at approximately φ ∼ 0.88. In figure 4(b),
we show the structure factor, which does not scale with finite size in either phase. Figure 4(c)
depicts the scaled condensate fraction, yielding φc = 0.84 ± 0.14, consistent with the peak in
the fidelity metric. (Note that the 18A cluster experiences a level crossing for φ < φc.) As in the
previous case, we cannot make definite statements about the nature of the transition between
the BM and the BEC state, but our results are consistent with a second order or a weakly
first-order transition.
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Figure 5. Momentum distribution function n(k) versus k (see footnote 8) for
V = 0 and (a) φ = 0, (b) φ = π/9, (c) φ = π/4 and (d) φ = π/3.
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Figure 6. Fidelity metric g (left) and structure factor SCDW (right) as a function
of interaction strength for various clusters with (a) φ = 0, (b) φ = π/12 and
(c) φ = π/6.

It is now interesting to study how the Bose surface changes as φ increases and one
transitions between the BM and the BEC phase. In figure 5, we show the momentum distribution
function for four values of φ and fixed V = 0. As seen in figure 5(b), the Bose surface reduces
in size as φ departs from zero and continues to shrink until condensation occurs at k = 0 (see
figures 5(c) and (d)) for φ > φc.

A third phase transition is expected as V is increased from zero and the BM phase is
destroyed to give rise to the large V CDW phase. We illustrate this regime in figure 6 by plotting
the fidelity metric (left panels) and CDW structure factor (right panels) for (a) φ = 0, (b) π/12
and (c) π/6. In the left panels, for all three values of φ, one can see a sort of two-peak structure
in the fidelity metric.
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Figure 7. Momentum distribution function n(k) versus k (see footnote 8) with
constant φ = 0 for (a) V = 0, (b) V = 0.25 and (c) V = 1.

The large value of g at V = 0 may be an indicator of a transition away from the BM at
V = 0+. It is somewhat similar to the behavior of g in both the one-dimensional Hubbard model,
where the Mott–metal–insulator phase transition occurs for the onsite repulsion U = 0+ [44],
and the two-dimensional hole-doped t–J model [45], where d-wave superconductivity was
seen to develop for a superconducting inducing perturbation with vanishing strength. Another
possibility is that the BM is stable for positive and small values of V , but a transition to another
phase occurs when V < 0. The peak produced by such a transition would also explain the
structure we see in g. We have also investigated this model with negative values of V , and
found that large peaks are present in the fidelity metric for V < 0. The position of those peaks
had a strong dependence on the cluster geometry. Hence, exactly what happens to the BM phase
in the region V ∼ 0 is something that requires further studies, maybe with other techniques that
allow access to larger system sizes and a better finite-size scaling analysis.

For all clusters and values of φ depicted in the left panels in figure 6, one can also see a
clear peak in the fidelity metric for finite values of V . This feature indicates the onset of CDW
order. The structure factor SCDW, depicted in the right panels in figure 6, make apparent that for
values of V beyond that peak, the CDW structure factor scales with system size.

In figure 7, we illustrate how the momentum distribution function changes in the presence
of interactions at fixed φ = 0. n(k) is shown for V = 0 in panel (a) and as the interactions are
increased in panels (b) and (c). In figure 7(b), one can see that the Bose-surface broadens as V
increases and moves closer to k = 0. Increasing the nearest-neighbor repulsion further, so that
the system enters in the CDW phase (figure 7(c)), results in a momentum distribution function
that peaked at k = 0, albeit without condensation. Instead, the structure factor S(k) is sharply
peaked at k = 0.

A summary of our calculations for different values of V and φ is presented in figure 8 as
the phase diagram of the hard-core BHH model at half-filling with t1 = 1.0 and t2 = 0.3. For
φ > π/4, the boundary of the CDW phase was identified by the crossing points in the scaling
of the structure factor (figure 3). The boundary of the BEC phase was identified by the crossing
points in the scaling of the condensate fraction (figures 3 and 4), and, for small values of V , also
using the maximum of the fidelity metric for the largest systems sizes (figure 4). For φ < π/4,
the CDW transition boundary was determined by the position of the maximum in the peak in
the fidelity metric for the largest system sizes (figure 6). Note that, in that regime, the BM phase
was found to be stable for V = 0. On the other hand, for V between 0 and the boundary of the
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0
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Figure 8. Phase diagram for the BHH model with parameters t1 = 1.0 and
t2 = 0.3. The solid red squares are determined by the crossing point in the scaling
of SCDW. The solid blue circles are from the crossing point in fc. The green
triangles are the average of the location of peak in the fidelity metric for the
largest system sizes. The BM phase is indicated by the thick, dashed magenta
line.

CDW phase, the large value of the fidelity metric, as well as the behavior of several observables
studied in that region, prevent us from making a clear statement about the nature of the ground
state.

5. Conclusion

In summary, we have studied the phase diagram of the hard-core BHH Hamiltonian, which has
allowed us to probe the effect of perturbations on the BM phase found in the frustrated XY
model on a honeycomb lattice [34]. In particular, we explored the parameter dependence of
the Bose wave vector and verified that the BM is stable under the effects of time-reversal and
chiral symmetry breaking. We identified three phases in the phase diagram of the BHH model:
(i) a BM, (ii) a BEC and (iii) a CDW. The phase transitions between the different phases were
identified utilizing the ground-state fidelity metric, the CDW structure factor, the condensate
fraction and the momentum distribution.

The BEC–CDW transition appears to be second order, although finite-size effects prevent
us from ruling out the possibility of a weak first-order transition or the existence of an
intermediate phase separating the BEC and the CDW states. If this transition is indeed a direct
second-order phase transition, the critical point would be highly non-trivial, and could be an
example of deconfined criticality.

We have also found that the BM is destroyed upon increasing V , before the Heisenberg
point for nearest-neighbor interactions V = 2J1 can be reached. The presence of a next-nearest-
neighbor repulsion may change this and result in transitions to other exotic phases.
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