
Abstract

In this paper, we investigate signatures of
topological phase transitions in interacting sys-
tems. We show that the key signature is the ex-
istence of a topologically protected level cross-
ing, which is robust and sharply defines the
topological transition, even in finite-size sys-
tems. Spatial symmetries are argued to play a
fundamental role in the selection of the bound-
ary conditions to be used to locate topological
transitions in finite systems. We discuss the the-
oretical implications of this result, and utilize ex-
act diagonalization to demonstrate its manifes-
tations in the Haldane-Fermi-Hubbard model.
Our findings provide an efficient way to detect
topological transitions in experiments and in
numerical calculations that cannot access the
ground-state wave function.
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The discovery of the integer quantum Hall effect1

provided a new type of quantum phase transition, the
topological transition, which does not depend on spon-
taneous symmetry breaking. In recent years, the inter-
est in topological states of matter and topological tran-
sitions was renewed by the discovery of a class of topo-
logical insulators with time-reversal symmetry2,3. For
noninteracting insulators, it is believed that all possible
topologically ordered states have been classified4,5,



and the transition between topologically distinct states
must feature a closing of the single-particle gap2,3,6.
At present, much of the recent development has fo-
cused on the role of interactions in topological insu-
lators, specifically the search for interaction-induced
topological insulators7–11 and understanding the na-
ture of quantum phase transitions between different
topological classes12–21.

Some of the most important challenges in the study
of interacting topological insulators lie in developing a
classification scheme and in the difficulty to accurately
compute the corresponding topological indices in an
interacting system. For a Chern insulator, the standard
way of calculating the topological invariant (the Chern
number) involves determining the ground-state wave
function with twisted boundary conditions22,23 or by
taking a three-dimensional (3D) integral of the Green’s
function24–26. Alternatively, it has been proposed that
topological order can be ascertained by examining
the single-particle gap near the edge states13 or the
entanglement spectrum27,28. Unfortunately, these ap-
proaches are computationally very challenging.

In this Rapid Communication, we show that, for
all interacting topological insulators that can be clas-
sified by the Chern number, the topological transition



is sharply defined in finite-size systems. In contrast to
non-interacting infinite systems, where the topological
transition is always marked by the closing of the single-
particle gap, we show that, for an interacting finite-
size system, the interaction-driven topological transi-
tion may be characterized by the closing of the excita-
tion gap without necessarily closing the single-particle
gap. This closing of the excitation gap can be viewed
as a topologically protected level crossing. Next, we
show that for models with inversion symmetry the level
crossing can only occur for boundary conditions that
are invariant under inversion. Based on this finding,
we provide a prescription for efficiently determining the
topological transition and, using exact diagonalization,
perform a representative study of interacting topologi-
cal states in the simplest case of a lattice quantum Hall
state with broken time-reversal symmetry.

We begin by formulating a general theory that cap-
tures such transitions. In contrast to ordinary quan-
tum phase transitions29, a topological phase transi-
tion does not require spontaneous symmetry break-
ing and can be precisely defined and observed even
in finite-size systems. Consider a two-dimensional in-
sulator with Hamiltonian H(λ), where λ is a control
parameter. Given twisted-boundary conditions30,31, the



Chern number can be defined22 as

C =

∫

dφxdφy

2πi

(

〈∂φx
Ψ∗|∂φy

Ψ〉 − 〈∂Φy
Ψ∗|∂φx

Ψ〉
)

,

(1)

where |Ψ〉 is the exact many-particle wave function and
φx (φy) are twists along the x (y) direction. As long as
a unique ground state is found for all twisted bound-
ary conditions, the integral of Eq. (1) is quantized to an
integer value for any size system. In other words, re-
gardless of the size of the system, we can always de-
fine a topological transition between insulators as the
place where C changes its value from one integer to
another.

Now we adiabatically vary λ from λ1 to λ2. If the
excitation gap remains finite during this procedure for
all twisted-boundary conditions, the value of the Chern
number must remain invariant because the topologi-
cal index is quantized to integer numbers for gapped
systems. This observation immediately implies that if
the topological index changes its value, then the exci-
tation gap ∆

(1)
ex = E1 −E0, with E0 (E1) the energy of

the ground (first-excited) state, must vanish for some
twisted-boundary condition at the topological transi-
tion. In direct contrast to an ordinary quantum phase



transition, where finite-size effects in general result in
a finite-size gap, this phenomenon of a vanishing exci-
tation gap remains even in finite-size systems, where
the vanishing of ∆(1)

ex implies the existence of a level
crossing between the lowest two states. We emphasize
here that this level crossing is required by the topo-
logical properties of the ground-state wave functions,
and thus we refer it to as a topologically protected level
crossing.

Identifying this topologically protected level cross-
ing point, in principle, requires the computation of exci-
tation gaps for every twisted-boundary condition. This
difficulty can be avoided if we focus on a special class
of topological transitions where (a) the system has
space-inversion symmetry and (b) the topological in-
dex changes by an odd number at the transition. These
two conditions are satisfied in a large class of topolog-
ical transitions [including the Haldane-Fermi-Hubbard
(HFH) Hamiltonian13, which we investigate below as
a test model]. With space-inversion symmetry, the ex-
citation gap at (φx, φy) must coincide with its part-
ner (−φx,−φy). At the topological transition point, this
symmetry relation implies that if the gap closes at
some (φx, φy), then (−φx,−φy) also has a level cross-



ing. Consequently, there are in general an even num-
ber of level crossings and the Chern number must
change by an even integer. In order for the Chern num-
ber to change by an odd value at the transition point,
the level crossing must occur at one of the boundary
conditions which are their own space-inversion part-
ners: (0, 0), (π, 0), (0, π), and (π, π). Thus, we only
need to examine the excitation gap for these high-
symmetry boundary conditions to identify the topolog-
ical transition. In addition, systems with higher rota-
tional symmetry can simplify this further31.

Finally, we emphasize that the existence of a level
crossing is a necessary condition for a topological tran-
sition, instead of a sufficient one. By naively looking at
the excitation gap, one cannot distinguish the topolog-
ical phase transition from an accidental level crossing.
However, if one knows that the topological index does
change, e.g., by calculating the Chern number or by
the use of limiting arguments, then the level crossing
must be associated with the topological transition.

To demonstrate the physics described above, we
use a thick-restart Lanczos algorithm32 to study a
model which has a lattice quantum Hall state with bro-
ken time-reversal symmetry6. Here, we consider the



HFH Hamiltonian13,

H =− t1
∑

〈i j〉

(

c†i cj + H.c.
)

− t2
∑

〈〈i j〉〉

(

eiφij c†i cj + H.c.
)

+ V
∑

〈i j〉

ninj ,
(2)

on a honeycomb lattice at half-filling, where c†i (ci )
are the fermion creation (annihilation) operators at
site i and ni = c†i ci is the corresponding num-
ber operator. Here t1 (t2) are the nearest-neighbor
(next-nearest-neighbor) hopping amplitudes, V is a
repulsive nearest-neighbor interaction, and the next-
nearest-neighbor hopping term has a complex phase
φij = ±φ corresponding to loops in the anti-clockwise
(clockwise) direction. In what follows, we restrict our
study to clusters whose symmetry in momentum space
contains the zone corner k = K, as justified in Ref.13.
Also note that we set the unit of energy t1 = 1 and the
definitions of all the observables are presented in the
Supplemental Material31.

For small V the system is a gapped topological in-
sulator, which has a unique ground state and a finite
gap ∆

(1)
ex . In the limit V → ∞, the system turns into a

topologically trivial charge-density-wave (CDW) insu-



lator in which all of the particles are located on one
sublattice. Here, the system has a doubly degenerate
ground state, i.e., ∆(1)

ex = 0, and two finite gaps: the ex-
citation gap ∆

(2)
ex = E2−E0, where E2 is the energy of

the second excited state, and single-particle gap ∆sp,
which is the energy required to add or remove a parti-
cle from the system31. In general, the onset of CDW or-
der and the change in the topological index may occur
at different interaction strengths, VC and VT , respec-
tively, opening up a topological Mott-insulating region.
For this Hamiltonian, we observe two cases that are re-
lated to the symmetry of the cluster: (1) VC < VT and
(2) VC = VT .

Figure 1 depicts the properties of the HFH Hamilto-
nian for the 24C cluster [see the inset in Fig. 1(d)] with
parameters that typify the case VC < VT . In Fig. 1(a),
we show the CDW structure factor31 and the Chern
number. Here the jump in the structure factor marks
the CDW transition at VC = 4.022 ± 0.001. In addi-
tion to the CDW transition, the topological index also
changes its value as V increases, and we identify the
topological transition at VT = 4.5281± 0.0001.

Next, we show the four lowest-energy states in
Fig. 1(b), with an inset focusing on the avoided level



crossing at V = VC . In addition, there is a topologically
protected level crossing at V = VT (not visible). This
can be seen more clearly in Fig. 1(c), where we show
the single-particle gap ∆sp and excitation gaps ∆

(1)
ex

and ∆
(2)
ex . Here ∆sp and ∆

(2)
ex both have a pronounced

minimum at V = VC , where both gaps are expected
to vanish in the thermodynamic limit. The topological
transition, on the other hand, is characterized by a van-
ishing excitation gap ∆

(1)
ex , not necessarily by the van-

ishing of the single-particle gap. This is in direct con-
trast to Ref.18, which claims that the topological transi-
tion is connected to the minimum of the single-particle
gap. In addition, we emphasize that for all of the clus-
ters we studied, the closing of the excitation gap at the
topological transition always takes place for the peri-
odic boundary condition case φx = φy = 0 (Ref.31).

One natural consequence of the level crossing
seen in Fig. 1(c) can be observed in the fidelity met-
ric31 g(V, δV ), which has been shown to be a sensitive
indicator of quantum phase transitions13,33–36. We illus-
trate this quantity in Fig. 1(d). While the CDW transition
is marked by a peak with finite width (independent of
δV ) indicative of a traditional (first-order) phase transi-
tion, the topological transition is characterized by a sin-



gular point where the overlap goes to zero, and the fi-
delity metric has a singular peak with height 2/N(δV )2

and width ∼ δV , where N is the number of sites. Here
we emphasize that because there is a topologically
protected level crossing, this singular behavior of the
fidelity metric will always occur for a topological transi-
tion. Due to the singular nature of this peak, numerical
calculations of g may easily miss this feature, instead
observing a jump discontinuity13.

The second case, VC = VT , is more representa-
tive of the model in the infinite limit. Indeed, for any
cluster which preserves the full symmetry of the hon-
eycomb lattice we find that VC = VT for all param-
eters studied. In Fig. 2, we show the properties of
the 24D cluster [see the inset in Fig. 2(d)] with the
same parameters as in Fig. 1. In Fig. 2(a), the CDW
transition, marked by the jump in the structure fac-
tor, and the change in the Chern number both occur
at V = VC = VT = 3.9813 ± 0.0001. As a result,
there is a level crossing [shown in Fig. 2(b)] which is
topologically protected and the ground state is triply
degenerate. This three-fold degeneracy becomes ev-
ident by examining the excitation gaps ∆

(1)
ex and ∆

(2)
ex

[Fig. 2(c)], which both approach zero as V → VT . In



the fidelity metric [Fig. 2(d)], we see only the singu-
lar peak associated with the topological transition. In
general, we find that the two features do coexist, with
the CDW fidelity peak becoming much sharper and, in
many cases, completely obscured by the singular peak
at the topological transition.

In Fig. 3, we show the t2-V phase diagrams for
clusters from 12 to 24 sites. In general, the sys-
tem is a topological insulator (TI) at weak-coupling
and a topologically trivial CDW insulator at strong-
coupling. For clusters without six-fold rotational sym-
metry [Figs. 3(a)-3(c)], we find a region of parame-
ter space with a coexistence of topological and CDW
order. For clusters with six-fold rotational symmetry
[Fig. 3(d)], we find that the CDW and topological tran-
sitions always coincide. As this symmetry is present
in the thermodynamic limit and given the reduction we
see in the region where CDW and topological order
coexist as we increase the size of the clusters without
that symmetry, we conclude that the topological CDW
insulator phase does not exist in this model in the ther-
modynamic limit. In addition, we find no evidence for
a topologically trivial insulating phase without CDW or-
der18.

It is known that, at t2 = 0, the system exhibits a



semi-metal-CDW transition at finite V in the thermo-
dynamic limit. However, in Fig. 3, we observe a sud-
den decrease in VC for small t2, resulting in a very
small value of VC at t2 = 0. This apparent contradic-
tion is due to finite-size effects, which become dom-
inant as V, t2 → 0. In this region, the single-particle
gap becomes very small (∼ t2), so much larger sys-
tems (with sizes larger than the inverse gap) need to
be studied to accurately determine the phase bound-
aries. To highlight this observation, we mark the onset
of strong finite-size effects (t2 = L−1) by a dashed
line in Fig. 3, where L is the linear size of the system.
The drop of VC takes place in the regime with strong
finite-size effects (t2 < L−1). As the system size in-
creases, the region with t2 < L−1 is pushed to t2 = 0,
so the sudden drop of VC at small t2 disappears in the
thermodynamic limit, resulting in a finite VC in the limit
t2 → 0.

In summary, we have shown that the closing of the
excitation gap is a signature of the topological transi-
tion in interacting systems. This topologically protected
level crossing exists even in finite-size systems, and
the resulting singular behavior at the transition can
be observed in quantities such as the fidelity metric.
When coupled with the use of spatial symmetries to



simplify the choice of boundary conditions, this phe-
nomenon provides an efficient scheme for locating the
topological transition which can be straightforwardly
generalized to time-reversal invariant topological insu-
lators and fractional topological states. Aside from a
few special cases37,38, our findings provide a generic
methodology to locate a topological transition in inter-
acting finite-size systems via an experimentally mea-
surable quantity. Consequently, this allows for the study
of topological phases and transitions in cold-atom ex-
periments and computational approaches in which the
ground-state wave function is not accessible.
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Figure 1: (Color online) (a) CDW structure factor
SCDW and Chern number C, (b) ground-state energy
E0 and first three excited state energies (E1, E2, and
E3) with an inset that shows a close up view of the
avoided level crossing at V = VC , (c) excitation gaps
∆

(1,2)
ex and a single-particle gap ∆sp, and (d) fidelity

metric g(V, δV ) with δV = 10−4 as a function of the
interaction strength V/t1 for the 24C cluster [see the
inset of (d)], and parameters t1 = 1.0, t2 = 0.8, and
φ = π/2. Note that this cluster does not possess all of
the symmetries present in the infinite system.
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Figure 2: (Color online) (a) CDW structure factor
SCDW and Chern number C, (b) ground-state energy
E0 and first three excited state energies (E1, E2, and
E3) with an inset that shows a close up view of the level
crossing at V = VC = VT , (c) excitation gaps ∆

(1,2)
ex

and a single-particle gap ∆sp, and (d) fidelity metric as
a function of the interaction strength V/t1 for the 24D
cluster [see the inset of (d)] and the same parameters
as Fig. 1.
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Figure 3: (Color online) t2-V phase diagram for the
(a) 12A, (b) 18C, (c) 24C, and (d) 24D clusters with
parameters t1 = 1.0 and φ = π/2. The red squares
indicate the onset of CDW order, and the blue circles
indicate the topological transition. The shaded region
marks the coexistence of CDW and topological order.
All points to the vertical line are dominated by strong
finite-size effects. Illustrations of the 12A and 18C clus-
ters are shown as insets in the corresponding panel.


